An Introduction to Forcing

Yang Rui Zhi

Department of Philosophy
Peking University

September 30th, 2009
Outline

1. Preliminary and Intention
 - Preliminary
 - Intention

2. Forcing and Consistency Proofs
 - Generic Extension
 - Forcing Relation
 - Forcing with Finite Partial Functions
1 Our Logic
- Soundness and Completeness of first-order predicate logic
 \(T \) is consistent if and only if \(T \) has a (countable) model.
- Gödel’s incompleteness results
 We can only hope relative consistency results, e.g.

\[
\text{Con}(\text{ZFC}) \rightarrow \text{Con}(\text{ZFC} + V = L)
\]

2 Our Theory of Sets
- Axioms of ZFC
- Partial orders, boolean algebras, filters, dense sets, chain/antichain, etc.
- Relativization and absoluteness
- Others: \(\Delta \)-system, cardinal arithmetic, etc.
We have found a “model” \(L \) of constructible sets in the ground model and shown that

\[
(ZF + V = L)^L, \quad V = L \rightarrow \text{GCH} \land \text{AC}. \tag{1}
\]

No inner model can be found to make \((ZF + V \neq L)\) true in it as long as ZFC is consistent.

We should extend our ground model \(M \) to be \(M[G] \), the generic extension.
Basic Idea

- Start from M, a countable, transitive model of ZFC.
- Design a partial order \mathbb{P} (the set of conditions) in M.
- Pick a generic filter $G \subseteq \mathbb{P}$, usually $G \notin M$.
- Make $M[G]$ the smallest transitive model of ZFC containing both M and G.
- The truth in $M[G]$ base mainly on the ground model M and the partial order \mathbb{P}.

Yang Rui Zhi
An Introduction to Forcing
Foundational Theorem of Forcing

Theorem (Theorem of Generic Model)

Given ground model M, partial order $\mathbb{P} \in M$, and generic filter G, there is a $M[G]$ such that

- $M[G]$ is a transitive model of ZFC;
- $M \subseteq M[G]$ and $G \in M[G]$;
- $M[G]$ is the smallest such model.

Theorem (Forcing Theorem)

Under the hypotheses of the previous theorem. Given formula $\varphi(v_1, \ldots, v_n)$ and \mathbb{P}-name $\tau_1, \ldots, \tau_n \in M$.

$$\varphi(\tau_1^G, \ldots, \tau_n^G)^{M[G]} \text{ if and only if } \exists p \in G(p \models \varphi(\tau_1, \ldots, \tau_n))^M.$$
Generic Filter

Definition

\(G \subseteq \mathcal{P} \) is a **generic filter** if \(G \) is a filter and for each dense \(D \subseteq \mathcal{P} \) such that \(D \in M \), \(G \cap D \neq \emptyset \).

- We can always found a generic filter in a countable ground model.
- We can do forcing from arbitrary partial order \(\mathcal{P} \), but only the following case is nontrivial.

 For each \(p \in \mathcal{P} \), there are \(q \leq p \) and \(r \leq p \) such that \(q \perp r \).
People in M should think about possible extensions, and denote the objects in them by \mathbb{P}-names.

Definition

τ is \mathbb{P}-name if τ is a relation, and for all $(\pi, p) \in \tau$, π is \mathbb{P}-name, $p \in \mathbb{P}$.

- The definition of \mathbb{P} must be considered as inductive.
- \mathbb{P}-name is an absolute notion.
- \mathbb{P}-names can be ranked.
The Generic Extension $M[G]$

We define the object τ^G that the name τ denotes, and G assigns to.

Definition

τ is \mathbb{P}-name,

\[
\tau^G = \{ \pi^G \mid (\exists p \in G)(\pi, p) \in \tau \}. \tag{2}
\]

Note that the definition is also inductive. The **generic extension** is defined as,

Definition

\[
M[G] = \{ \tau^G \mid \tau \in M^\mathbb{P} \}. \tag{3}
\]

$M[G]$ is transitive if M is.
The Canonical Names

Definition

For each set x in the ground model, we define

$$ \check{x} = \{ (\check{y}, p) \mid y \in x, p \in \mathbb{P} \}. $$

(4)

We claim that $\check{x}^G = x$. Thus $M \subseteq M[G]$.

Definition

$$ \hat{G} = \{ (\hat{p}, p) \mid p \in \mathbb{P} \}. $$

(5)

- \hat{G} has nothing to do with G.
- $G = \hat{G}^G \in M[G]$.
- G is the oracle beyond M and finally decides $M[G]$.
Forcing Relation
Atomic Case

We define the forcing relation \(p \Vdash \varphi(\tau_1, \ldots, \tau_n) \), where \(p \) is a condition, \(\tau_1, \ldots, \tau_n \) are \(\mathbb{P} \)-name.

Definition

1. For atomic formula, we define by induction on \((\text{rank}(\tau_1), \text{rank}(\tau_2))\)

 \begin{itemize}
 \item \(p \Vdash \tau_1 = \tau_2 \) iff \(p \Vdash \tau_1 \subseteq \tau_2 \) and \(p \Vdash \tau_2 \subseteq \tau_1 \),
 \item \(p \Vdash \tau_1 \subseteq \tau_2 \) iff for each \((\pi, r) \in \tau_1\),
 \{q \mid q \leq r \rightarrow q \Vdash \pi \in \tau_1\} is dense below \(p \);
 \item \(p \Vdash \tau_1 \in \tau_2 \) iff \{q \mid \exists(\pi, r) \in \tau_2 (q \leq r \land q \Vdash \pi = \tau_1)\} is dense below \(p \).
 \end{itemize}

The atomic case is absolute.
We continue the definition by induction on the complexity of formula.

Definition

1. \(p \models \varphi \land \psi \) if and only if \(p \models \varphi \) and \(p \models \psi \);
2. \(p \models \neg \varphi \) if and only if for each \(q \leq p \), \(q \not\models \varphi \);
3. \(p \models \exists x \varphi(x) \) if and only if
 \[\{ q \mid \exists \pi (\pi \text{ is } \mathbb{P}\text{-name} \land q \models \varphi(\pi)) \} \text{ is dense below } p. \]

- Forcing relation is not absolute generally.
- The forcing relation is the “logic” of the people living in \(M \). It decides the outline of every possible \(M[G] \).
Some Additional Property of Forcing Relation

Theorem

- If $q \leq p$, then $p \forces \varphi$ implies $q \forces \varphi$.
- $\{p \mid p \forces \varphi \lor p \forces \neg \varphi\}$ is dense.
- No $p \in \mathbb{P}$ forces both φ and $\neg \varphi$.
Proof of the Forcing Theorem

We prove that

$$\varphi(\tau_1^G, \ldots, \tau_n^G) \text{ iff } \exists p \in G (p \Vdash \varphi(\tau_1, \ldots, \tau_n))^M$$

- Atomic case
- Boolean and quantifier case
Finish the Proof of the Generic Model Theorem

Lemma

\[M[G] \models ZFC. \]

Proof.

- Extensionality: \(M[G] \) is transitive.
- Foundation: holds in each \(\in \) model.
- For those axioms that asserts existence of sets, we should design appropriate names.

Lemma

If \(N \) is a transitive model of ZFC and that \(M \subseteq N, G \in N \), then \(M[G] \subseteq N \).
The crucial trick is to design the partial order. Here we give a simple example.

Definition (Finite partial functions)

\[Fn(I, J) = \{ p : |p| < \omega \land p \text{ is a function} \land \text{dom } p \subseteq I \land \text{ran } p \subseteq J \}. \]

The order on \(Fn(I, J) \) is defined as

\[p \leq q \iff p \supseteq q. \]
Some Example

- Forcing with $Fn(\omega, \omega_1)$

$$\bigcup G \text{ is a total function mapping } \omega \text{ onto } \omega_1? \quad (8)$$

- Forcing with $Fn(\kappa \times \omega, 2)$
 - $f = \bigcup G : \kappa \times \omega \mapsto 2$ is total.
 - For $\alpha < \kappa$, Letting
 $$f_\alpha : \omega \mapsto 2, \text{ such that } f_\alpha(n) = f(\alpha, n). \quad (9)$$
 - $\langle f_\alpha : \alpha < \kappa \rangle$ is an one-to-one sequence mapping κ into 2^ω in $M[G]$.
Preserving Cardinals

Theorem

\(\mathbb{P} \in M. \) If \((\mathbb{P} \text{ is c.c.c.)}^M \), then for each generic \(G \) of \(\mathbb{P} \) over \(M \) and ordinal \(\alpha \in M \),

\[(\alpha \text{ is a cardinal})^M \leftrightarrow (\alpha \text{ is a cardinal})^{M[G]} . \]

Lemma

\(Fn(\kappa \times \omega, 2) \) is c.c.c..

Use the \(\Delta \)-system theorem.
Further Discussion

Theorem

For each κ with $\text{cf } \kappa > \omega$.

$$\text{Con}(ZFC) \rightarrow \text{Con}(ZFC + 2^\omega = \kappa).$$

- We have shown that $\text{Con}(ZFC) \rightarrow \text{Con}(ZFC + 2^\omega > \kappa)$ for each κ.
- Forcing with a ground model of $ZFC + \text{GCH}$.
The generic extension $M[G]$ is built from the ground model M, the partial order $\mathbb{P} \in M$, and the generic filter G (usually not in M).

The general truth in $M[G]$ is already described by the forcing relation in M, so is decided mainly by \mathbb{P} and M.

Outlook

- Proper Forcing.
- \mathbb{P}_{max} Forcing.
For Further Reading

T. Jech.
Set Theory.

K. Kunen.
Set Theory: An Introduction to Independence Proofs.
Elsevier Science Publisher B.V., 1983.

P. J. Cohen.
Independence Results in Set Theory.

T. Y. Chow.
A beginner’s guide to forcing.