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Putting it all together: the Weil conjectures,
Serre, and Grothendieck

Hendrik Lenstra twenty years ago was firm in his
conviction that he did want to solve Diophantine
equations, and did not not wish to represent
functors—and now he is amused to discover himself
representing functors in order to solve Diophantine
equations! (Barry Mazur)



The Weil conjectures:

Number theory that would have amazed Gauss.

Stated using topology from Riemann and Betti.

To be proved (maybe?) by the latest cohomology.



No one had the least idea how to define [a Weil]
cohomology and I am not sure anyone but Serre and I,
not even Weil if that is possible, was deeply convinced
such a thing must exist. (Grothendieck)



The number theory:

Are there integers X,Y with X3 − Y 3 = 5?

There are mod 3:

23 + 33 = 35 ≡ 2 (mod 3) and 5 ≡ 2 (mod 3)

But there are not modulo 9. Just check all 81 possibilities.

Diophantine equations are hard. Modulo n, not so hard.



Chinese remainder theorem (孙子 3rd c. AD) shows we only
need consider prime powers n = pk.

For any finite system Σ of diophantine equations, in variables
X1, . . . , Xn, and any prime p, let Nk be the number of solutions
to Σ modulo the power pk.

Obviously 0 ≤ Nk ≤ pnk.

For nice systems Σ, Weil gave incredibly beautiful, easy to
calculate, estimates of how Nk grows as k goes to infinity.



Most amazing:

Betti The estimates only depend on the Betti numbers
of the manifold defined by Σ as equations on
complex numbers.

Lefschetz A simple use of the Lefschetz fixed point theorem,
if you have a cohomology theory for arithmetic
spaces.

No one had the least idea how to define such a cohomology and
I am not sure anyone but Serre and I, not even Weil if that is
possible, was deeply convinced such a thing must exist.
(Grothendieck)



Not only the cohomology had to be discovered.

No one even knew what spaces could express this arithmetic!

This truly revolutionary idea thrilled the mathe-
maticians of the time, as I can testify at first hand.

(Jean-Pierre Serre)

Everything would have to be re-invented.



Relevant to philosophy of math: universe, topos, and scheme.

Grothendieck did not believe in universes. He believed
in toposes and schemes. Cartier and Bénabou

For Grothendieck, schemes and toposes are the special and
general cases of “the new style of space.”

Universes are sets too big for ZFC to prove they exist. A
technical device.



Conceptually: a scheme and a topos are both spaces.

Logically each is a category as big as the universe of all ZFC
sets.

To approach these categories from a ‘näıve’ point of
view, [and] to avoid certain logical difficulties, we
accept the notion of a Universe, a set ‘large enough’
that the habitual operations of set theory do not go
outside it. Grothendieck

But this was a technicality for Grothendieck. Not actually
interesting.



What is a scheme?

1. Whatever works for the Weil conjectures.

2. a ringed topological space – standard official definition
today.

3. a functor on rings – the “functor of points.”

4. for Grothendieck, a topos (étale ringed topos).

It is better not to ask what a scheme is, but how schemes relate
to each other.



The points . . . have no ready to hand geometric
sense. . . . When one needs to construct a scheme one
generally does not begin by constructing the set of
points. . . . [While the definition] gives standing to
bizarre schemes, allowing it gives a category of
schemes with nice properties. (Pierre Deligne)

Schemes relate to each other the way lines, and spheres, and
surfaces of genus n, and more should.

Plus specific new examples specific to arithmetic.



What is a (Grothendieck) topos?

It is like a topological space, but (radically) more general.

Conceptually, it is whatever has cohomology!

So it could be a topological space, or it could be a group.

And Grothendieck developed the ideas so that a topos could be
a scheme!

Let us look at it another way.

From inside, a topos looks like a universe of sets.



You can do all of ordinary mathematics inside any topos. But it
will not always work out just like in ordinary sets.

Math in the topos ET of a topological space T reflects the
topology of T .

Math in the topos EG of a group G reflects algebra in G.

Math in the topos ES of a scheme S reflects the arithmetic of S.



For a start, simple group theory done inside the topos ET (or
EG, or ES) will give the cohomology groups of T (or G or S).

Well, the topos defines the cohomology of S, since that had no
prior meaning!

But in the other cases the topos cohomology agrees with the
classical cohomology.



When T and G and S are singletons, then ET and EG and ES
are all (isomorphic to) the ordinary category of sets.



In fact Grothendieck was quite surprised at how much of
ordinary mathematics you can do in a topos.

He spent at least 15 years absorbing this idea.

This is one of the reasons why he says:

Certainly, for more than one aspect of this new
geometry (if not for all) no one, on the very eve of the
day it appeared, could have dreamed of it—the worker
himself no more than others.

For Grothendieck, “a rebirth of geometry.”



Grothendieck himself proved most of the steps in the Weil
conjectures using his étale cohomology.

The last, and greatest step (the “Riemann hypothesis over finite
fields”) remained a challenge.

Grothendieck posed “standard conjectures” to complete itf.

Deligne completed the proof by a very clever trick, using étale
cohomology but bypassing the standard conjectures.

Grothendieck was very disappointed with this.



As to the larger picture.

Many mathematicians currently prefer to bypass toposes.

But Grothendieck’s approach to cohomology, introduced in his
paper called Tōhoku, is the reason why one noted number
theorist says:

One now instinctively assumes all obstructions are best
described in terms of cohomology groups.

(Swinnerton Dyer)



Category theory as a theory

Category has been defined in order to be able to define
functor, and functor has been defined in order to be
able to define natural transformation.

(Peter Freyd)



One philosophic motive for learning this: Category theory is a
powerful, widely used, format for organizing vast information.



The first-order Eilenberg-Mac Lane category axioms.

These axioms have trivial consistency strength.

They all follow from

∀x∀y ( x = y ).

But that is not an interesting interpretation.

Categorical foundations for mathematics will assume much
more than just the elementary category axioms.



There are objects A,B,C, . . . , and arrows f, g, h, . . . .

Each arrow goes from some object to some object, f :A→B.

Each object A has an identity arrow 1A :A→A.

And when arrow match up f :A→B and g :B→C they have a
composite gf :A→C.

Composition is associative and has identities:

h(gf) = (hg)f and f1a = 1Bf = f.



In pictures:
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Types: A,B,C . . . for objects, and f, g, h . . . for arrows.

Operators:

Dom takes arrows to objects, read “domain of.”

Cod takes arrows to objects, read “codomain of.”

1 takes objects to arrows, read “identity arrow of.”

Relation: C(x, y; z) applies to arrows, read “z is the composite
of x and y.”



Axioms (free variables A,f,g,h):

Cod f = Dom g if and only if ∃! h C(f, g;h).

If C(f, g;h) then (Dom f = Domh & Cod g = Codh).

Dom 1A = Cod 1A = A.

C(1(Dom f), f ; f) and C(f, 1(Cod f); f).

If C(f, g; i) and C(g, h; j) and C(f, j; k), then C(i, h; k).



Some finite examples have technical uses:

1
β

  
0 0

α // 1 0

α
>>

γ
// 2

1 2 3

Some large (proper class) examples: the category Set of sets
and functions, the category Grp of groups and group
homomorphisms.

Intermediate sized: Riemann the category of Riemann surfaces
and holomorphic maps.



The categorical definition of isomorphism immediately spread
across all of mathematics.

People had long known two different spaces can have “the same
topology” (say, a disk and a square). Such spaces were called
homeomorphic (among other things).

Two different groups can have “corresponding group laws,” and
there were various terms for that.

But why should one definition of “the same structure” work for
both topological spaces and groups?

One does.



An arrow f :A→B is an isomorphism if it has an inverse, that
is an arrow g :B→A with gf = 1A and fg = 1B.

Objects A,B are isomorphic if there is some isomorphism
f :A→B.
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Think g and f “undo” each other.



A product of object A,B is an object and two arrows

A Pp1
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p2
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Such that for any object and two arrows T, f, g there is unique
arrow u with p1u = f and p2u = g;
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In the category Set of sets, the cartesian product A×B is a
product, with

p1〈x, y〉 = x and p2〈x, y〉 = y and u(t) = 〈f(t), g(t)〉.

But

1. this is stated in any category,

2. in some categories products are quite different from
cartesian, or do not exist;

3. and this is only defined up to isomorphism.



If you have two products for A,B, say P, p1, p2 and Q, q1, q2
then there are unique v, w:
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And it follows that v, w are inverse. So P,Q are isomorphic.



Categorical definitions always, automatically, are just up to
isomorphism.

In ZFC there are any different definitions of ordered pair, and
so of the cartesian product A×B.

People say it does nto matter which you take since all give
isomorphic versions of A×B.

The categorical definition skips all that in the first place.



A functor F :A→B, assigns to each object A of A an object
FA of B, and assigns to each arrow f :A→A′ of A an arrow
Ff :FA→FA′ of B, so that it preserves domain, codomain,
identity arrows, and composition.

To put it in a diagram:
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So F maps the whole network of arrows in A, to the network of
arrows n B.



The k-th homology functor:
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A cleaner more foundational example:
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A functor from 2 to A just picks out an arrow of A.



A very important class of functors.

The forgetful functor or underlying set functor U :Grp→Set
takes each group G and gives just the set U(G) of its elements.

We say we “forget the group operations.”

Many structures, including topological spaces have underlying
set functors. But there are important examples that do not.



A natural transformation τ :F→G, is a family of arrows in B
which roughly speaking carry values of F over to values of G.

It assigns to each object A of A an arrow τA :FA→GA,
meeting the naturality condition:

(Gf)(τA) = (τA′)(Ff)

In a diagram:
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When all the arrows τA are isomorphisms, we say F and G are
naturally isomorphic.

The two functors do practically the same thing.

They are the same up to isomorphism.



The term category theory did not exist in 1957.

Categories and functors were tools to use in theories. They did
not make up an independent subject.

“Category theory” was coined by the mathematical biologist
Robert Rosen in 1958.

The term was accepted by category theorists because of
Grothendieck.

But also, because of Daniel Kan inventing adjoint functors.



I will warn that some mathematicians dislike the term
“category theory” since they think it should mean paying too
much attention to foundational issues.

Some dislike logic and set theory in the same way.

That’s not a problem to me.

Whatever you call it, working mathematics today uses a lot of
categories and functors, and adjunctions.



You can do a lot of group theory just looking at
homomorphisms f :G→H between groups.

This is what Emmy Noether emphasized.

But sometimes you want to look at the set of elements of G.

To be precise, we use the underlying set functor U :Grp→Set.

A powerful way to organize this is to relate it to the free group
functor F :Set→Grp.



Think of a set A as a set of letters: A = {a, b, c, d . . . }.

Say a word on this set is any string of letters and inverse letters:

db−1ca−1b or acd−1bd

Multiply them by just putting them together

db−1ca−1bacd−1bd

The only detail that if you have a letter next to its inverse, like
c−1c you cancel them out.

This gives a group, called the free group on A, FA. The unit
element is the empty string.



This is actually a functor F :Set→Grp.

It has a close connection to the underlying set functor
U :Grp→Set.

A function f :A→UG from any set A to the set of elements of
any group G is practically the same thing as a group
homomorphism h :FA→G from the free group on A.

People had long known this somehow.

Saying it clearly led to huge progress in many fields.



Working mathematical ontology today

For some time mathematicians have emphasized that
mathematics is concerned with structures involving
mathematical objects and not with the “internal”
nature of the objects themselves. They have recognized
that we are not given mathematical objects in isolation
but rather in structures. (Michael Resnik)



Some issues in philosophy of mathematics are purely
philosophical.

But many are in fact pressing daily issues in mathematics – and
so, mathematicians have answers that work.
This lecture is about some of those.



Three things drive mathematicians to ever stronger, more agile
organizing tools.

Insight Clearing away the details can make a solution
stand out.

Teaching There is a constant drive for better, clear, up to
date textbooks.

Proofs Current proofs are often extremely long



For example Andrew Wiles’ proof of Fermat’s Last Theorem
cites several dozen advanced theorems that even experts cannot
be expected to know in full offhand.

Those theorems also have very long proofs!

He has to be able to use theorems, which have been proved, but
without looking at the proofs themselves.

Hegel’s ideal is a practical necessity:

In the result, the proof is over and done with and has
vanished.



Understand, in much current mathematics it is completely out
of the question for one book to give a major proof in full
starting from just concepts and theorems found in graduate
textbooks.



Each cited theorem must be concise, explicit, and fully reliable
outside its original context.

Theorems must be stated structurally.

Homology theory today would be infeasible if each author had
to check every other author’s specific ZFC construction of
homology groups.

Methods must handle structures at every level from natural
numbers to functors by comparable means that readily relate
any two levels.



Today I will look at two practical issues at a textbook level. In
Resnik’s terms:

1. Cross-structure identity. If real numbers, for example, as
just points in the real number structure, then how they
also be complex numbers?

2. Structures as points in structures. If the ring of real
polynomials R[X] is a structure with points in it, then how
can it also be just a point in a larger structure?

Daily working mathematics handles these issues by routine use
of categories and functors.



Section refS:begin extends Resnik’s structuralism by the
standard practice of identifying some structures as parts of
others. Certain injections S1�S2 of one structure S1 into
another S2 are taken as identity preserving and thus as making
S1 a part of S2. We use textbook treatments of the real and
complex numbers to argue that such identity is not defined by
any logical principles but by stipulation or tradition. This
opens up a philosophical topic of explaining how particular
cases come to be accepted as identity preserving.
Section refS:structuralism pursues the original point of
structuralist methods—defining structures as themselves places
in patterns of structures rather the way that Resnik describes in
his later chapters. It takes polynomials as an example and
discusses foundations.



If, for example, real numbers have only relations to each other,
how do they gain relations to complex numbers?

We suppose you understand the real numbers! The
complex numbers are formal expressions x0 + x1i with
x0, x1 real, combined by

(x0 + x1i) + (y0 + y1i) = (x0 + y0) + (x1 + y1)i

(x0 + x1i)(y0 + y1i) = (x0y0 − x1y1) + (x0y1 + x1y0)i

(Conway and Smith)



If Conway and Smith were ZF set theorists this would mean
real numbers cannot be complex numbers.

A real number defined in ZF is not a formal expression made
from two real numbers and a letter i.

But Conway and Smith freely equate each real number x with
the complex number x+ 0i.

Virtually all mathematicians do.



Serge Lang:

We identify R with its image in C.

Some important injections are taken as identity preserving.

There is no definition of identity preserving.

It is just a stipulation, a matter of explicit convention.

Mathematicians stipulate which injections are identity
preserving only taking care never to stipulate two distinct
identity preserving injections between the same patterns.
Nearly everyone takes R�C as identity preserving.
Lang says “it is customary to identify” certain elements of
many different algebras with “the integers” or the rational
numbers, real numbers et c.

Again, there is no criterion for this. It is stipulation.



Philosopher Fraser MacBride (like many others, I believe) says
“the notion of ‘identity by fiat’ makes dubious sense.”

But he gives no further argument.

It makes sense to tens of thousands of mathematicians every
year. And to me.

Until MacBride or others express a more specific objection, I
will say the standard working solution is a good one.

A possible project.



As to structures in structures, I quote Resnik again:

Patterns themselves are (. . . ) identified with positions
of another pattern, which allows us to obtain results
about patterns which were not even previously statable.
It is [this] sort of reduction which has significantly
changed the practice of mathematics.

We can look at how this is actually done with polynomials,
rings, and the category of rings.



A commutative ring R is a structure with 0,1, addition,
subtraction, and multiplication following the familiar formal
rules.

A ring morphism f :R→Q is a function which preserves 0,1,
and the ring operations:

f(0) = 0 f(x− y) = f(x)− f(y) etc.

We will say “ring” to mean commutative ring.



Intuitively, a real polynomial p(X) is a sum of powers if X:

anX
n + an−1X

n−1 + · · ·+ a0 with all ai ∈ R

But what is a sum of powers?

Is it some kind of set? Is it a string of symbols?

Lang says there are “several devices” for this, does not pick one
answer.

Let us see how Lang precisely describes the ring of polynomials.



Lang states: R[X] is a ring with element X ∈ R[X] and a
morphism c :R→R[X] called the insertion of constants.

For each ring homomorphism f :R→A and element a ∈ A,
there is a unique homomorphism ua :R[X]→A

R[X]

ua
��

X_

��
R

c 33

f ,, A a

with ua(X) = a and agreeing with f on constants.

Do not worry about the details.



The point is Lang defines polynomials, not by saying what each
one is, but by saying what the ring of them is.

He describes that ring by its place in the category of rings.

Suggests two set theoretic definitions of polynomials in different
books. Neither one precise. Avoids using either one.

He just uses the above precise fact in proofs.

This is how structural mathematics is done. How most
mathematics today is done.



Lang’s fact does not uniquely specify R[X], but defines it up to
isomorphism.

Suppose a ring R[X] and function c satisfy the fact, and so do
another R[X ′] and c′. Then there is a unique ring isomorphism
u :R[X]→R[X ′] such that u(X) = X ′ and uc = c′.

R[X] X

R
c 33

c′ ++ R[X ′]
��

OO

X ′
��

OO



We categorical foundationalists like definitions up to
isomorphism, so we use that fact to define R[X], – but right
now I am talking about working methods, not foundations.



Further, a standard research tool, not yet standard in
textbooks, can describe the whole category Ring of rings
without saying a ring has a set of elements.

This describes Ring up to isomorphism in the category of
categories, or even just up to equivalence, depend on exactly
how you do it.

Define a functor T :Set→Set taking each set A to the set of all
ring theoretic words on A.



That is, think of a set A as a set of letters: A = {a, b, c, d . . . }.
A ring theoretic word on A is any string of letters, and letters
0,1, linked by plus and times:

(db+ a)(c+ 1) or (a+ 0) + cd

Add and Multiply them by just putting them together

((db+a)(c+1))+((a+0)+cd) or ((db+a)(c+1))((a+0)+cd)

Now, consider two words equal if and only if the ring axioms
would imply they are the same.



This functor has natural transformations η : 1Set→T and
µ :T2→T forming a triple or monad on Set.

Again do not worry about the details.

For some purposes it is actually useful (not only possible in
principle) to define Ring as the Eilenberg-Moore category of
the triple T, η, µ.

This can be done up to isomorphism of categories, or up to
equivalence, depending on details.

Either way it immediately gives an adjunction whose parts are
the free ring functor F :Set→Ring and underlying set functor
functor U :Ring→Setfunctor F :Set→Ring



To be completely structuralist, we would do all of this in the
Category of Categories as Foundation.

But that is an issue of foundations.


