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ABSTRACT
In this paper, we introduce a lightweight dynamic epistemic
logical framework for automated planning under initial un-
certainty. We reduce plan verification and conformant plan-
ning to model checking problems of this logic. We show that
the model checking problem of the iteration-free fragment is
PSPACE-complete. By using two non-standard (but equiv-
alent) semantics, we give novel model checking algorithms
to the full language and the iteration-free language.

1. INTRODUCTION
Conformant planning is the problem of finding a linear

plan (a sequence of action) to achieve a goal in presence of
uncertainty about the initial state (cf. [30]). For example,
suppose that you are a rookie spy trapped in a foreign hotel
with the following map at hand:1

s6 s7:Safe s8:Safe

s1 r // s2 r //

u

OO

s3 r //

u

OO

s4:Safe r //

u

OO

s5

Now somebody spots you and sets up the alarm. In this
case you need to move fast to one of the safe hiding places
marked in the map (i.e., s7, s8 and s4). However, since
you were in panic, you lost your way and you are not sure
whether you are at s2 or s3 (denoted by the circle in the
above graph). Now what should you do in order to reach a
safe place quickly? Clearly, merely moving r or moving u
may not guarantee your safety given the uncertainty. A sim-
ple plan is to move r first and then u, since this plan will take

∗Corresponding author
1It is a variant of the running example in [35].
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you to a safe place, no matter where you actually are ini-
tially. This plan is conformant since it does not require any
feedback during the execution and it should work in pres-
ence of uncertainty about the initial state. More generally,
a conformant plan should also work given actions with non-
deterministic effects. Such a conformant plan is crucial when
there is no feedbacks/observations available during the exe-
cution of the plan.2 Note that since no information is pro-
vided during the execution, the conformant plan is simply a
finite sequence of actions without any conditional moves.

As discussed in [10, 25], conformant planning can be re-
duced to classical planning, the planning problem without
any initial uncertainty, over the space of belief states. In-
tuitively, a belief state is a subset of the state space, which
records the uncertainty during the execution of a plan, e.g.,
{s2, s3} is an initial belief state in the above example. In
order to make sure a goal is achieved eventually, it is crucial
to track the transitions of belief states during the execution
of the plan, and this may traverse exponentially many belief
states in the size of the original state space. As one may ex-
pect, conformant planning is computationally harder than
classical planning. The complexity of checking the existence
of a conformant plan is EXPspace-complete in the size of
the variables generating the state space [19]. In the litera-
ture, people proposed compact and implicit representations
of the belief spaces, such as OBDD [14, 16, 15] and CNF
[32], and different heuristics are used to guide the search for
a plan [12, 7, 13, 32, 26].

Besides the traditional AI approaches, we can also take an
epistemic-logical perspective on planning in presence of ini-
tial uncertainties, based on dynamic epistemic logic (DEL)
(cf. e.g., [33]). The central philosophy of DEL takes the
meaning of an action as the changes it brings to the knowl-
edge of the agents. Intuitively, this is what we need to track
the belief states during the execution of a plan3. Indeed,
in recent years, there has been a growing interest in us-
ing DEL to handle multi-agent planning with knowledge
goals (cf. e.g., [8, 24, 1, 3, 36, 27]), while the traditional
AI planning focuses on the single-agent case. In particular,
the event models of DEL (cf. [6]) are used to handle non-
public actions that may cause different knowledge updates to
different agents. In these DEL-based planning frameworks,

2In many other cases, feedbacks may be just too ‘expensive’
to obtain during a plan aiming for quick actions [9].
3Here the belief states are actually about knowledge in epis-
temic logic.



states are epistemic models, actions are event models and
the state transitions are implicitly encoded by the update
product which computes an new epistemic model based on
an epistemic model and an event model.

One advantage of this approach is its expressiveness in
handling scenarios which require reasoning about agents’
higher-order knowledge about each other in presence of par-
tially observable actions. However, this expressiveness comes
at a price, as shown in [8, 4], that multi-agent epistemic
planning is undecidable in general. Many interesting de-
cidable fragments are found in the literature [8, 24, 36, 2],
which suggest that the single-agent cases and restrictions on
the form of event models are the key to decidability. How-
ever, if we focus on the single-agent case, a natural ques-
tion arises: how do we compare such DEL approaches with
the traditional approaches to single-agent AI planning? It
seems that the DEL-based approaches are more suitable for
planning with actions that change (higher-order) knowledge
rather than planning with fact-changing actions, although
the latter type of actions can also be handled in DEL. More-
over, the standard models of DEL are purely epistemic which
do not encode the temporal information of available actions
directly, which may limit the use of such approaches to plan-
ning problems based on transition systems.

In this paper, we tackle the standard single-agent confor-
mant planning problem over transition systems, by using the
idea, but not the standard formalism of DEL. Our formal
framework is based on the logic proposed by Wang and Li
in [35], where the model is simply a transition system with
initial uncertainty as in the motivating example, and the se-
mantics of an action is a dynamic one, in the sense that it
updates the uncertainty of the agent. Our contributions are
summarized as follows:

• A lightweight dynamic epistemic framework with a
simple language and a complete axiomatization.

• Non-trivial reduction of conformant planning to a model
checking problem using our language extended with
programs.

• Two novel model checking algorithms based on two
alternative semantics for the proposed logic to handle
the context-dependency in the original semantics.

• The complexity of model checking the iteration-free
fragment of our language is Pspace-complete. The
model checking problem of the full language is in EX-
Ptime. Thes model checking problem of the confor-
mant planning is in Pspace.

The last result may sound contradictory to the aforemen-
tioned result that the complexity of conformant planning is
EXPspace-complete. Actually, the apparent contradiction
is due to the fact that the EXPspace complexity result is
based on the number of state variables which require an ex-
ponential blow up to generate an explicit transition system
that we use here. We will come back to this issue at the end
of Section 4.3.

Our approach has the following advantages compared to
the existing planning approaches:

• The planning goals can be specified as arbitrary formu-
las in an epistemic language. Extra plan constraints

(e.g., what simple plans and actions to use) can be ex-
pressed explicitly by programs in the language. There-
fore it may cover a richer class of (conformant) plan-
ning problems compared to the traditional AI approach
where a goal is Boolean.4

• The plans can be specified as regular expressions with
tests in terms of arbitrary EPDL formulas, which gen-
eralizes the knowledge-based programs in [18, 22].

• By reducing conformant planning to a model checking
problem in an explicit logical language, we also see the
subtleties in the logical specification of the planning
problem. In principle, there are various model check-
ing techniques to be applied to conformant planning
based on this reduction.

• Our logical language and models are very simple com-
pared to the standard action-model based DEL ap-
proach, yet we can encode the externally given ex-
ecutability of the actions in the model, inspired by
epistemic temporal logic (ETL) [17, 28].

• Our approach is flexible enough to provide, in the
future, a unified platform to compare different plan-
ning problems under uncertainty. By studying dif-
ferent fragments of the logical language and model
classes, we may categorize planning problems accord-
ing to their complexity.

The rest of the paper is organized as follows: We introduce
our basic logical framework and its axiomatization in Section
2, and extend it in Section 3 with programs to handle the
conformant planning. The complexity analysis of the model
checking problem is in Section 4 and we conclude in Section
5 with future directions.

2. BASIC FRAMEWORK

2.1 Epistemic action language
To talk about the knowledge of the agent during an exe-

cution of a plan, we use the following language proposed in
[35].

Definition 2.1 (Epistemic Action Language (EAL)).
Given a countable set A of action symbols and a countable set
P of atomic proposition letters , the language EALAP is defined
as follows:

φ ::= > | p | ¬φ | (φ ∧ φ) | [a]φ | Kφ,

where p ∈ P, a ∈ A. The following standard abbreviations
are used: ⊥ := ¬>, φ ∨ ψ := ¬(¬φ ∧ ¬ψ), φ → ψ := ¬φ ∨
ψ, 〈a〉φ := ¬[a]¬φ, K̂φ := ¬K¬φ.

Kφ says that the agent knows that φ, and [a]φ expresses
that if agent can move forward by action a, then after doing
a, φ holds. Through out the paper, we fix some P and A,
and refer to EALAP by EAL.

4The goal in the standard conformant planning is simply a
set of different valuations of basic propositional variables.
Our approach can even handle epistemic goals in negative
forms, e.g., we want to make sure the agent knows something
but does not know too much in the end.



The size of EAL-formulas (notation |ϕ|) is defined induc-
tively: |>| = |p| = 1; |¬φ| = 1 + |φ|; |φ ∧ ψ| = 1 + |φ|+ |ψ|;
|Kφ| = |[a]φ| = 1 + |φ|. The set of subformulas of φ ∈ EAL,
denoted as sub(φ), is defined as usual.

Definition 2.2 (Uncertainty map). Given P and A,
a (multimodal) Kripke model N is a tuple 〈S, {Ra | a ∈
A},V〉, where S is a non-empty set of states, Ra ⊆ S × S
is a binary relation labelled by a, V : S → 2P is a valua-
tion function. An uncertainty map M is a Kripke model
〈S, {Ra | a ∈ A},V〉 with a non-empty set U ⊆ S. Given
an uncertainty map M, we refer to its components by SM,
RaM, VM, and UM. A pointed uncertainty map M, s is an
uncertainty map M with a designated state s ∈ UM. We
write s

a→ t for (s, t) ∈ Ra.

Intuitively, the Kripke model encodes a map (transition
system) and the uncertainty set U encodes the uncertainty
that the agent has about where he is in the map. The graph
mentioned at the beginning of the introduction is a typical
example of an uncertainty map. Note that there may be
non-deterministic transitions in the model, i.e., there may
be t1 6= t2 such that s

a→ t1 and s
a→ t2 for some s, t1, t2.

Remark 1. It is crucial to notice that the designated state
in a pointed uncertainty map must be one of the states in the
uncertainty set.

Definition 2.3 (Semantics). Given any uncertainty
map M = 〈S, {Ra | a ∈ A},V,U〉 and any point s ∈ U ,
the semantics is defined as follows:

M, s � > always
M, s � p ⇐⇒ s ∈ V(p)
M, s � ¬φ ⇐⇒ M, s 2 φ
M, s � φ ∧ ψ ⇐⇒ M, s � φ and M, s � φ
M, s � [a]φ ⇐⇒ ∀t ∈ S : s

a→ t implies M|a, t � φ
M, s � Kφ ⇐⇒ ∀u ∈ U :M, u � φ

where M|a = 〈S, {Ra | a ∈ A},V,U|a〉 and U|a = {r′ | ∃r ∈
U such that r

a→ r′}. We say φ is valid (notation: � φ) if it
is true on all the pointed uncertainty maps. For a action se-
quence σ = a1 . . . an, we write U|σ for (. . . ((U|a1)|a2) . . . )|an .
and write M|σ for (. . . ((M|a1)|a2) . . . )|an .

Intuitively, the agent ‘carries’ the uncertainty set with him
when moving forward and obtain a new uncertainty set U|a.
Note that here we differ from [35] where the updated uncer-
tainty set is further refined according to what the agent can
observe at the new state. For conformant planning, we do
not consider the observational power of the agents during
the execution of a plan.

Let us call the model mentioned in the introduction M,
it is not hard to see that M|r and (M|r)|u are as follows:

s6 s7:Safe s8:Safe

s1 r // s2 r //

u

OO

s3 r //

u

OO

s4:Safe r //

u

OO

s5

s6 s7:Safe s8:Safe

s1 r // s2 r //

u

OO

s3 r //

u

OO

s4:Safe r //

u

OO

s5

Thus we have:

• M, s3 � [r](Safe ∧ ¬KSafe)

• M, s3 � K[r][u](Safe ∧KSafe)

The usual global model checking algorithm for modal log-
ics labels the states by the subformulas which are true on
the states. However, this cannot work here since the truth
value of epistemic formulas on the states outside U is simply
undefined. Moreover, the exact truth value of an epistemic
formula on a state depends on ‘how you get there’, as the
following example shows (the underlined states mark the
actual states):

s1 b //

a

��

s3 : p

a

��
s2

a

<<

s4

b→

s1 b //

a

��

s3 : p

a

��
s2

a

<<

s4

s1 b //

a

��

s3 : p

a

��
s2

a

<<

s4

a→ a→

s1 b //

a

��

s3 : p

a

��
s2

a

<<

s4

Let the left-hand-side model be M then it is clear that
M|b, s3 � Kp while M|aa, s3 2 Kp thus M, s1 � 〈b〉Kp ∧
〈a〉〈a〉¬Kp. This shows that the truth value of an epistemic
subformula w.r.t. a state in the model is somehow ‘context-
dependent’, which requires new techniques in model check-
ing. We will make this explicit in Section 4.3 when we dis-
cuss the model checking algorithm.

Here is also an example about planning with both pos-
itive and negative epistemic goals (the agent should know
something but not too much).

Example 1. Given uncertainty map M depicted as fol-
lows, let the goal is Kp then both a and b are solutions. If
the goal is Kp ∧ ¬Kq, only a is a solution.

s1 a //

b

##

s3 : p

s2
a //

b

##

s4 : p, q

s5 : p, q

2.2 Axiomatization
Following the axioms proposed in [35], we give the follow-

ing axiomatization for EAL w.r.t. our semantics:



System SELA
Axioms Rules

TAUT all axioms of propositional logic MP
φ, φ→ ψ

ψ

DISTK K(p→ q) → (Kp→ Kq) NECK
φ

Kφ

DIST(a) [a](p→ q) → ([a]p→ [a]q) NEC(a)
φ

[a]φ

T Kp→ p SUB
φ(p)

φ(ψ)

4 Kp→ KKp

5 ¬Kp→ K¬Kp

PR(a) K[a]p→ [a]Kp

NM(a) 〈a〉Kp→ K[a]p

where a ranges over A, p, q range over P. PR(·) and NM(·) de-
note the axioms of perfect recall and no miracles respectively
(cf. [34]).

Note that since we do not assume that the agent can ob-
serve the available actions, the axiom OBS(a) : K〈a〉> ∨
K¬〈a〉> in [35] is abandoned. Due to the same reason, the
axiom of no miracles is also simplified.

Based on a refinement of the completeness proof in [35],
we show the completeness of SELA.

Theorem 2.1. SELA is sound and strongly compete w.r.t.
EAL on uncertainty maps.

Proof. To prove that SELA is sound on uncertainty maps,
we need to show that all the axioms are valid and all the in-
ference rules preserve validity. Since the uncertainty set in
an UM denotes an equivalent class, axioms T, 4 and 5 are
valid; due to the semantics, the validity of axioms PR(·) and
NM(·) can be proved step by step; others can be proved as
usual.

To prove SELA is strongly complete on uncertainty maps,
we only need to show that every SELA-consistent set of for-
mulas is satisfiable on some uncertainty map. The proof
idea is that we construct an uncertainty map consisting of
maximal SELA-consistent sets (MCSs) and then with the
Lindenbaum-like lemma that every SELA-consistent set of
formulas can be extended in to a MCS (we omit the proof
here), we only need to prove that every formula holds on the
MCS to which it belongs.

Firstly, we construct a canonical Kripke model N c =
〈Sc, {Rca | a ∈ A},Vc〉 as follows:

• Sc is the set of all MCSs;

• sRcat ⇐⇒ for any φ ∈ t then 〈a〉φ ∈ s ⇐⇒ for any
[a]φ ∈ s then φ ∈ t;

• Vc(p) = {s | p ∈ s}.

Given s ∈ Sc, we define Ucs = {u ∈ Sc | Kφ ∈ s iff Kφ ∈ u},
and it is obvious that s ∈ Ucs . Thus we have that for each
s ∈ Sc,Mc

s = 〈N c,Ucs 〉 is an uncertainty map, andMc
s, s is

a pointed uncertainty map.
Secondly, we prove the following claims.

Claim 2.1. If ¬Kφ ∈ s, then there exists u ∈ Ucs such
that ¬φ ∈ u.

Let u− be {Kψ | Kψ ∈ s} ∪ {¬φ}. Then u− is consistent.
For suppose not, there are Kψ1, . . . ,Kψn such that ` Kψ1∧

· · · ∧Kψn → φ. By rule NECK and axiom DISTK, it follows
that ` KKψ1 ∧ · · · ∧KKψn → Kφ. It follows by axiom 4

that KKψi ∈ s for each 1 ≤ i ≤ n. Thus we have Kφ ∈ s.
This is contrary with ¬Kφ ∈ s. We conclude that u− is
consistent. By Lindenbaum-like Lemma, there exists a MCS
u extending u−. Now since u− ⊆ u, it is clear that Kψ ∈ s
implies Kψ ∈ u for any ψ. On the other hand, if Kψ 6∈ s
then K¬Kψ ∈ s by axiom 5. Therefore K¬Kψ ∈ u, and
thus Kψ 6∈ u by axiom T. It follows that u ∈ Ucs .

Claim 2.2. If ¬[a]φ ∈ s, then there exists t ∈ Ucs such

that s
a→ t and ¬φ ∈ t.

Let t− be {ψ | [a]ψ ∈ s} ∪ {¬φ}. Then t− is consistent.
For suppose not, there are ψ1, . . . , ψn such that ` ψ1 ∧ · · · ∧
ψn → φ. By rule NEC(a) and axiom DIST(a), it follows that
` [a](ψ1 ∧ · · · ∧ ψn) → [a]φ. By ` [a]ψ1 ∧ · · · ∧ [a]ψn →
[a](ψ1∧· · ·∧ψn), it follows that ` [a]ψ1∧· · ·∧ [a]ψn → [a]φ.
Thus we have [a]φ ∈ s. This is contrary with ¬[a]φ ∈ s. We
conclude that t− is consistent. By Lindenbaum-like Lemma,
there exists a MCS t extending t−. It follows by t− ⊆ t that
s
a→ t and ¬φ ∈ t.

Claim 2.3. If s
a→ t, then we have Ucs |a = Uct .

⊆: Assuming v ∈ Ucs |a, we need to show v ∈ Uct , namely we
need to show that Kφ ∈ v ⇐⇒ Kφ ∈ t. Since v ∈ Ucs |a,
we have that there is u ∈ Ucs such that uRcav. If Kφ ∈ t, it
follows by axiom 4 that KKφ ∈ t. Thus we have 〈a〉KKφ ∈
s. By axiom NM(a), it follows that K[a]Kφ ∈ s. By u ∈ Ucs
and axiom T, we have [a]Kφ ∈ u. It follows by uRcav that
Kφ ∈ v. If Kφ 6∈ t, we have ¬Kφ ∈ t. By axiom 5, we have
K¬Kφ ∈ t. Similarly, we have ¬Kφ ∈ v. Thus we have
Kφ 6∈ v.
⊇: Assuming v ∈ Uct , we need to show v ∈ Ucs |a, namely

there is u ∈ Ucs such that uRcav. Let u− be {Kφ | Kφ ∈
s}∪{〈a〉ψ | ψ ∈ v}. Then u− is consistent. For suppose not,
we have ` Kφ1∧· · ·∧Kφn → [a]¬ψ1∨· · ·∨ [a]¬ψk for some
n and k. Since ` [a]¬ψ1∨· · ·∨[a]¬ψk → [a](¬ψ1∨· · ·∨¬ψk),
we have ` Kφ1 ∧ · · · ∧Kφn → [a](¬ψ1 ∨ · · · ∨¬ψk). By rule
NECK and axiom DISTK, we have ` KKφ1 ∧ · · · ∧KKφn →
K[a](¬ψ1 ∨ · · · ∨ ¬ψk). Since KKφi ∈ s for each 1 ≤ i ≤ n,
we have K[a](¬ψ1 ∨ · · · ∨ ¬ψk) ∈ s. By axiom PR(a), it
follows that [a]K(¬ψ1 ∨ · · · ∨ ¬ψk) ∈ s. It follows by sRcat
that K(¬ψ1 ∨ · · · ∨ ¬ψk) ∈ t. Since v ∈ Uct , by axiom T, we
have ¬ψ1 ∨ · · · ∨ ¬ψk ∈ v. This is contrary with ψi ∈ v for
each 1 ≤ i ≤ k. Thus u− is consistent. By Lindenbaum-like
Lemma, there exists a MCS u extending u−. It follows by
u− ⊆ u that u ∈ Ucs and uRcav. We conclude that v ∈ Ucs |a.

Finally, we will show that Mc
s, s � φ iff φ ∈ s. we prove

it by induction on φ. We only restrict our attention to the
cases of [a]φ and Kφ; the other cases are straightforward.
φ = [a]ψ, if Mc

s, s � [a]ψ but [a]ψ 6∈ s. Thus we have
¬[a]ψ ∈ s. It follows by Claim 2.2 that there is t such that
sRcat and ¬ψ ∈ t. By IH, we have Mc

t , t � ¬ψ. By Claim
2.3, we have Mc

t = Mc
s|a. Thus we have Mc

s|a, t � ¬ψ.
This is contrary with Mc

s, s � [a]ψ and sRcat. On the other
hand, if [a]ψ ∈ s but Mc

s, s 2 [a]ψ. Thus there exists t
such that sRcat and Mc

s|a, t � ¬ψ, namely Mc
t , t � ¬ψ. By

IH, we have ¬ψ ∈ t. It follows by sRcat that ¬[a]ψ ∈ s,
contradiction. φ = Kψ, if Mc

s, s � Kψ but Kψ 6∈ s. Thus
we have ¬Kψ ∈ s. It follows by Claim 2.1 that there is
u ∈ Ucs such that ¬ψ ∈ u. By IH, we have Mc

u, u � ¬ψ. It
follows by u ∈ Ucs that Ucs = Ucu. Thus we haveMc

s, u � ¬ψ.



This is contrary with Mc
s, s � Kψ and u ∈ Ucs . On the

other hand, if Kψ ∈ s but Mc
s, s 2 Kψ. Thus there exists

u ∈ Ucs such that Mc
s, u � ¬ψ. It follows by Ucs = Ucu that

Mc
u, u � ¬ψ. By IH, we have ¬ψ ∈ u. By axiom T, it

follows that ¬Kψ ∈ u. This is contrary with Kψ ∈ s and
u ∈ Ucs .

3. AN EXTENSION OF EAL FOR CONFOR-
MANT PLANNING

3.1 Epistemic PDL over uncertainty maps
In this section we extend the language of EAL with pro-

grams in propositional dynamic logic and use this extended
language to express the existence of a conformant plan.

Definition 3.1 (Epistemic PDL). The Epistemic PDL
Language (EPDL) is defined as follows:

φ ::= > | p | ¬φ | (φ ∧ φ) | [π]φ | Kφ
π ::= a | ?φ | (π;π) | (π + π) | π∗

where p ∈ P, a ∈ A. We use LπMφ to denote [π]φ ∧ 〈π〉φ.
Given a B ⊆ A, we write B∗ for (Σa∈Ba)∗. The size of EPDL
formulas/programs is given by: |[π]φ| = |π| + |φ|, |a| = 1,
|π1;π2| = 1+|π1|+|π2|, |?φ| = |π∗| = 1+|φ|, and |π1+π2| =
1 + |π1|+ |π2|.

Given any uncertainty map M = 〈S, {Ra | a ∈ A},V,U〉,
any point s ∈ U , the semantics is given by a mutual induc-
tion on φ and π:

M, s � > always
M, s � p⇔ s ∈ V(p)
M, s � ¬φ⇔M, s 2 φ

M, s � φ ∧ ψ⇔M, s � φ and M, s � ψ
M, s � [π]φ⇔ for all M′, s′ : (M, s)JπK(M′, s′)

implies M′, s′ � φ
M, s � Kφ⇔ for all t ∈ U :M, t � φ

(M, s)JaK(M′, s′)⇔M′ =M|a and s
a→ s′

(M, s)J?ψK(M′, s′)⇔ (M′, s′) = (M, s) and M, s � ψ
(M, s)Jπ1;π2K(M′, s′)⇔ (M, s)Jπ1K ◦ Jπ2K(M′, s′)

(M, s)Jπ1 + π2K(M′, s′)⇔ (M, s)Jπ1K ∪ Jπ2K(M′, s′)
(M, s)Jπ∗K(M′, s′)⇔ (M, s)JπK?(M′, s′)

where ◦,∪, ? at right-hand side express the usual compo-
sition, union and reflexive transitive closure of binary rela-
tions respectively. Clearly this semantics coincides with the
semantics of EAL on EAL formulas.

Note that each program π can be viewed as a set of mixed
sequences, which are sequences of actions in A and φ ∈ EPDL:

L(a) = {a}
L(?φ) = {φ}
L(π;π′) = {ση | σ ∈ L(π) and η ∈ L(π′)}
L(π + π′) = L(π) ∪ L(π′)
L(π∗) = {ε} ∪

⋃
n>0(L(π · · ·π︸ ︷︷ ︸

n

)) where ε is empty sequence

Here are some valid formulas which are useful in our latter
discussion:

[π;π′]φ ↔ [π][π′]φ
[π + π′]φ ↔ [π]φ ∧ [π′]φ

[?ψ]φ ↔ (ψ → φ)

We leave the complete axiomatization of EPDL on uncer-
tainty maps to future work.

3.2 Conformant planning via model checking
EPDL

Definition 3.2 (Conformant planning). Given an
uncertainty map M, a goal formula φ ∈ EPDL, and a set
B ⊆ A, the conformant planning problem is to find a finite
(possibly empty) sequence σ = a1a2 · · · an ∈ L(B∗) such that
for each u ∈ UM we have M, u � La1MLa2M · · · LanMφ. The
existence problem of conformant planning is to test whether
such a sequence exists.

Recall that LπMφ is the shorthand of [π]φ ∧ 〈π〉φ. Intu-
itively, we want a plan which is both executable and safe
w.r.t. non-deterministic actions and initial uncertainty of
the agent. It is crucial to observe the difference between
La1MLa2M · · · LanMφ and La1; a2; · · · ; anMφ by the following ex-
ample:

Example 2. Given uncertainty map M depicted as fol-
lows, we have M, s1 � La; bMp but M, s1 2 LaMLbMp.

s2 b // s4 : p

s1

a

>>

a

!!
s3

Given M and φ, to verify whether σ ∈ L(π) is a confor-
mant plan can be formulated as the model checking prob-
lem: M, u � KLa1MLa2M · · · LanMφ. On the other hand, the
existence problem of a conformant plan is more complicated
to formulate: it asks whether there exists a σ ∈ L(B∗) such
that it can be verified as a conformant plan. The simple-
minded attempt would be to check whether M, u � KLB∗Mφ
holds. However KLB∗Mφ may hold on a model where the se-
quences to make sure φ on the states in UM are different, as
the following example shows:

Example 3. Given uncertainty map M depicted as fol-
lows, let the goal formula be p and B = {a, b}. We have
M, s1 � KLB∗Mp, but there is no solution to this conformant
planning problem.

s1 a // s3 b // s5 : p

s2 b // s4 a // s6 : p

The right formula to check for the existence of a confor-
mant plan w.r.t. B ⊆ A and φ ∈ EPDL is:

θB,φ = 〈(Σa∈B(?K〈a〉>; a))∗〉Kφ.

For example, if B = {a1, a2} then θB,φ = 〈((?K〈a1〉>; a1) +
(?K〈a2〉>; a2))∗〉Kφ. Intuitively, the confrmant plan con-
sists of actions that are always executable given the uncer-
tainty of the agent (guaranteed by the guard K〈a〉>). In the
end the plan should also make sure that φ must hold given
the uncertainty of the agent (guaranteed by Kφ). In the
following, we will prove that this formula is indeed correct.

First, we need an easy observation (φ(ψ/φ) is obtained by
replacing any occurrence of φ by ψ, similar for Jπ(ψ/χ)K):



Proposition 3.1. If � ψ ↔ χ, then:

(1) � φ↔ φ(ψ/χ);

(2) JπK = Jπ(ψ/χ)K.

Lemma 3.1. For any a1a2 · · · an ∈ L(A∗):

� KLa1MLa2M · · · LanMφ↔ 〈?K〈a1〉>; a1; . . . ; ?K〈an〉>; an〉Kφ

Proof. It is trivial when n = 0 (i.e., the sequence is ε),
since the claim then boils down to Kφ ↔ Kφ. We prove
the non-trivial cases by induction on n ≥ 1. For the case of
n = 1, we need to show that

� KLaMφ↔ 〈?K〈a〉>; a〉Kφ (◦)

that is to show M, s � K〈a〉φ ∧K[a]φ iff M, s � K〈a〉> ∧
〈a〉Kφ for any M, s. For the left-to-right direction, due to
the fact that � K〈a〉φ→ K〈a〉>, we only need to show that
M, s � 〈a〉Kφ. Suppose not, it follows that M|a, t � ¬Kφ
for any t such that s

a→ t. Due to the fact thatM, s � K〈a〉>
there must exist a t such that s

a→ t and M|a, t � ¬Kφ. By
the semantics, it follows thatM|a, t′ � ¬φ for some t′ ∈ U|a.
By the definition of U|a, we have that there is s′ ∈ U such

that s′
a→ t′. Thus we have M, s′ � 〈a〉¬φ. It follows that

M, s � ¬K[a]φ. This contradicts the assumption of M, s �
K[a]φ. To verify the right-to-left direction, firstly, we will
show that M, s � K[a]φ. Suppose not, then M, s′ � ¬[a]φ
for some s′ ∈ UM. It follows that M|a, t′ � ¬φ for some t′

such that s′
a→ t′. SinceM, s � 〈a〉Kφ, we haveM|a, t � Kφ

for some t such that s
a→ t. Because of M|a, t′ � ¬φ, it

follows by t′ ∈ U|a that M|a, t � ¬Kφ. This contradicts
that M|a, t � Kφ. Thus we have M, s � K[a]φ. With the
assumption ofM, s � K〈a〉>, it follows thatM, s � K〈a〉φ.

Now, as the induction hypothesis, we assume that:

� KLa1MLa2M · · · LakMφ↔ 〈?K〈a1〉>; a1; . . . ; ?K〈ak〉>; ak〉Kφ.

We need to show:

�KLa1MLa2M · · · Lak+1Mφ↔
〈?K〈a1〉>; a1; . . . ; ?K〈ak+1〉>; ak+1〉Kφ.

By IH,

�KLa1MLa2M · · · Lak+1Mφ↔
〈?K〈a1〉>; a1; . . . ; ?K〈ak〉>; ak〉KLak+1Mφ. (1)

Due to (◦) and Proposition 3.1, we have

�〈?K〈a1〉>; a1; . . . ; ?K〈ak〉>; ak〉KLak+1Mφ↔
〈?K〈a1〉>; a1; . . . ; ?K〈an〉>; ak〉〈?K〈ak+1〉>; ak+1〉Kφ. (2)

The conclusion is immediate by combining (1) and (2).

Theorem 3.1. Given a pointed uncertainty map M, s,
an EPDL formula φ and a set B ⊆ A, the following two are
equivalent:

(1) There is a σ = a1 . . . an ∈ L(B∗) such that M, s �
KLa1MLa2M · · · LanMφ;

(2) M, s � 〈(Σa∈B(?K〈a〉>; a))∗〉Kφ.

Proof. (1) implies (2): Assuming (1) then by Lemma
3.1, it follows that

M, s � 〈?K〈a1〉>; a1; . . . ; ?K〈an〉>; an〉Kφ.

Since σ ∈ L((Σa∈B(?K〈a〉>; a))n), by the semantics, we have
M, s � 〈(Σa∈B(?K〈a〉>; a))n〉Kφ. Thus we have M, s �
〈(Σa∈B(?K〈a〉>; a))∗〉Kφ.

(2) implies (1): It follows by the semantics that M, s �
〈(Σa∈B(?K〈a〉>; a))n〉Kφ for some n ≥ 0. Thus we have
M, s � 〈(?K〈a1〉>; a1); . . . ; (?K〈an〉>; an〉Kφ for some aiB
where 1 ≤ i ≤ n. It follows by Lemma 3.1 that M, s �
KLa1MLa2M · · · LanMφ.

We end this section with a remark that the K operator
right before φ in the definition of θB,φ cannot be omitted, as
demonstrated by the following example:

Example 4. Given uncertainty map M depicted as fol-
lows, let the goal formula be p. As we can see, there is
no solution to this conformant planning problem. Indeed
M, s1 2 〈(Σa∈B(?K〈a〉>; a))∗〉Kp with B = a, b, but we could
have M, s1 � 〈(Σa∈B(?K〈a〉>; a))∗〉p.

s1 a // s2 b //

b

""

s5 : p

s4

4. MODEL CHECKING EPDL: COMPLEX-
ITY AND ALGORITHMS

In this section, we first focus on the model checking prob-
lem of the following star-free fragment of EPDL (call it EPDL−):

φ ::= > | p | ¬φ | (φ ∧ φ) | [π]φ | Kφ
π ::= a | ?φ | (π;π) | (π + π)

We will show that model checking EPDL− is Pspace-complete.
In particular, the upper bound is shown by making use of an
alternative context-dependent semantics. Then we give an
EXPtime algorithm for the model checking problem of the
full EPDL inspired by another alternative semantics based
on 2-dimensional models. Finally we give a Pspace algo-
rithm for the conformant planning problem in EPDL. Note
that throughout this section, we focus on uncertainty maps
with finitely many states and assume Ra = ∅ for co-finitely
many a ∈ A.

4.1 Complexity of model checking EPDL−

4.1.1 Lower Bound
To show the Pspace lower bound, we provide a polyno-

mial reduction of QBF (quantified Boolean formula) truth
testing to the model checking problem of EPDL−. Note that
to determine whether a given QBF (even in prenex normal
form based on a conjunctive normal form) is true or not is
known to be Pspace-complete [31]. Our method is inspired
by [29] which discusses the complexity of model checking
temporal logics with past operators. Surprisingly, we can
use the uncertainty sets to encode the ‘past’ and use the
dual of the knowledge operator to ‘go back’ to the past.
This intuitive idea will become more clear in the proof.

QBF formulas areQ1x1Q2x2 . . . Qnxnφ(x1, . . . , xn) where:

• For 1 ≤ n ≤ n,Qi is ∃ if i is odd, and Qi is ∀ if i is
even.



• φ is a propositional formula in CNF based on variables
x1, . . . , xn,

For each such QBF α with n variables, we need to find a
pointed modelMn, x0 and a formula θα such that α is true
iff Mn, x0 � θα. The model Mn is defined below.

Definition 4.1. Let A = {ai, āi | i ≥ 1} and P = {pk, qk |
k ≥ 1}, the uncertainty map Mn = 〈S, {Ra | a ∈ A},V,U〉
is defined as:

• S = {x0} ∪ {xi | 1 ≤ i ≤ n} ∪ {x̄i | 1 ≤ i ≤ n}

• V(x0) = ∅, and V(xi) = {pi},V(x̄i) = {qi} for 1 ≤ i ≤
n.

• ai→= {(s, s) | s ∈ S} ∪ {(xi−1, xi), (x̄i−1, xi)}

• āi→= {(s, s) | s ∈ S} ∪ {(xi−1, x̄i), (x̄i−1, x̄i)}

• U = {x0}

Mn can be depicted as the following graph:

x1 : p1

A

��
a2 //

ā2

��

x2 : p2

A
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a3 //

ā3
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· · · xn−1 : pn−1
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x̄1 : q1
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ā2 //

a2
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x̄2 : q2

A

XX
ā3 //

a3
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· · · x̄n−1 : pn−1

A

XX
ān //

an
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x̄n : qn

A

XX

Given α = Q1x1Q2x2 . . . Qnxnφ(x1, . . . , xn), the formula
θα is defined as

QT1 · · ·QTnψ(K̂p1, · · · , K̂pn, K̂q1, · · · , K̂qn)

where QTi is 〈(ai + āi); ?(pi ∨ qi)〉 if i is odd and QTi is
[(ai + āi); ?(pi ∨ qi)] if i is even, and ψ is obtained from

φ(x1, . . . , xn) by replacing each xi with K̂pi and ¬xi with

K̂qi.
To ease the latter proof, we first define the valuation tree

below.

Definition 4.2 (V-tree). A V-tree τ is a rooted tree
such that 1) each node is 0 or 1 (except the root ε); 2) each
internal node with even level has only one successor; 3) each
internal node with odd level has two successors and one suc-
cessor is 0 and the other one is 1; 4) each edge to node 0 of
level i is labelled āi; 5) each edge to node 1 of level i is la-
belled ai. Given a V-tree with depth n, a path σ is a sequence
of A1 . . . An where Ai = ai or Ai = āi. A path σ can also be
seen as a valuation assignment for x1, . . . , xn with the con-
vention that σ(xi) = 1 if ai occurs in σ and σ(xi) = 0 if āi
occurs in σ. Let path(τ) be the set of all paths of τ .

A V-tree τ can be depicted as the following graph:

ε

a1

��
1

ā2

��
a2

��
0

a3

��

1

ā3

��
1 0

It is not hard to see the following:

Proposition 4.1. For each 1 ≤ i ≤ n, we have α =
Q1x1 . . . QixiQi+1xi+1 . . . Qnxnφ is true iff there exists a V-
tree τ with depth i such that σ(Qi+1xi+1 . . . Qnxnφ) = 1 for
each σ ∈ path(τ) (σ is viewed as a valuation).

Now let us see the update result of running a path σ ∈
path(τ) on Mn.

Proposition 4.2. Given Mn, let σ = A1 . . . Ai (1 ≤ i ≤
n) be a sequence of actions such that Ak = ak or Ak = āk
for each 1 ≤ k ≤ i, then we have U|σ = {x0, X1, . . . , Xi}
where Xk = xk if Ak = ak else Xk = x̄k for each 1 ≤ k ≤ i.

Proof. We prove it by induction on i. It is obvious if i =
1. Next we need to show that U|σAi+1 = {x0, X1, . . . , Xi+1}.
By IH, it follows that U ′ = U|σ = {x0, X1, . . . , Xi} where
Xk = xk if Ak = ak else Xk = x̄k for each 1 ≤ k ≤ i. By
the definition of semantics, we have U|σAi+1 = U ′|Ai+1 . It

follows by the definition of Mn that Xk
Ai+1→ s iff s = Xk

for each 1 ≤ k < i and Xi
Ai+1→ s iff s = Xi or s = xi+1

if Ai+1 = ai+1 or s = x̄i+1 if Ai+1 = āi+1. Thus we have
U ′|Ai+1 = {x0, X1, . . . , Xi+1} where Xk = xk if Ak = ak
else Xk = x̄k for each 1 ≤ k ≤ i+ 1.

Given σ = A1 . . . An where Ai is ai or āi for each 1 ≤ i ≤
n, let g(σ) = xn if An = an and g(σ) = x̄n if An = ān. By
Proposition 4.2, we always have g(σ) ∈ UMk |

σ with k > n.
Thus given Mk and σ = A1 . . . An and k > n, Mk|σ, g(σ)
is a pointed uncertainty map.

Proposition 4.3. For each 1 ≤ i ≤ n, we haveMk, x0 �
QT1 . . . QTiQTi+1 . . . QTnψ iff there exists a V-tree τ with
depth i such thatMk|σ, g(σ) � QTi+1 . . . QTnψ for each σ ∈
path(τ), where k > n and g(σ) is the state corresponds to
the last edge of σ, e.g., g(a1ā2) = x̄2.

Proof. We prove it by induction on i. If it is the case
i = 1, we begin the proof with the left-to-right direction.

Thus we have that there exists a state t such that x0
A1→ t and

Mk|A1 , t � p1∨q1 andMk|A1 , t � QT2 . . . QTnψ where A1 is
a1 or ā1. IfMk|A1 , t � p1, it follows by the definition ofMk

that A1 is a1 and t is x1. We can construct V-tree τ as ε
a1→ 1,

and we have Mk|a1 , x1 � QT2 . . . QTnψ. If Mk|A1 , t � q1,
then we have A1 = ā1 and t = x̄1. We can construct τ as

ε
ā1→ 0, and we also have Mk|ā1 , x̄1 � QT2 . . . QTnψ. For

the right-to-left direction, it is obvious. Next we need to
show that Mk, x0 � QT1 . . . QTi+1QTi+2 . . . QTnψ iff there

exists a V-tree τ ′ with depth i+ 1 such that Mk|σ
′
, g(σ′) �

QTi+2 . . . QTnψ for each σ′ ∈ path(τ ′). By IH, we only need



to show that there exists a V-tree τ with depth i such that
Mk|σ, g(σ) � QTi+1 . . . QTnψ for each σ ∈ path(τ) iff there

exists a V-tree τ ′ with depth i+ 1 such that Mk|σ
′
, g(σ′) �

QTi+2 . . . QTnψ for each σ′ ∈ path(τ ′). There are two situ-
ations: i+ 1 is even or odd.

If i + 1 is even, to verify the right-to-left direction, we
get a V-tree τ ′ by extending τ with two successors 0 and 1
to each leaf of τ , and labelling edge to new leaf 0 as āi+1

and labelling edge to 1 as ai+1. Next we need to show that

for each σ′ ∈ path(τ ′), Mk|σ
′
, g(σ′) � QTi+2 . . . QTnψ. By

the definition of g(σ) and g(σ′), we have g(σ)
Ai+1→ g(σ′)

where Ai+1 is ai+1 or āi+1 such that σ′ = σAi+1. Since
Mk|σ, g(σ) � [(ai+1 + āi+1)][?(pi+1 ∨ qi+1)]QTi+2 . . . QTnψ

and g(σ)
Ai+1→ g(σ′), it follows that Mk|σ

′
, g(σ′) � [?(pi+1 ∨

qi+1)]QTi+2 . . . QTnψ. It is obvious that Mk|σ
′
, g(σ′) �

pi+1 ∨ qi+1. Thus we have Mk|σ
′
, g(σ′) � QTi+2 . . . QTnψ.

To verify the left-to-right direction, we get τ by cutting the
i + 1 level of τ ′. Next we need to show that Mk|σ, g(σ) �
[(ai+1 + āi+1)][?(pi+1 ∨ qi+1)]QTi+2 . . . QTnψ for each σ ∈
path(τ). By the semantics, for each t such that g(σ)

Ai+1→ t
andMk|σAi+1 , t � pi+1∨qi+1, we need to showMk|σAi+1 , t �
QTi+2 . . . QTnψ. By the definition ofMk andMk|σAi+1 , t �
pi+1∨qi+1, it follows that t is xi+1 or x̄i+1. Thus there exists
σ′ ∈ path(τ ′) such that σ′ = σAi+1 and t = g(σ′). By as-

sumption, we haveMk|σ
′
, g(σ′) � QTi+2 . . . QTnψ. Thus we

have for each σ ∈ path(τ), Mk|σ, g(σ) � QTi+1 . . . QTnψ.
If i+ 1 is odd, we firstly verify the right-to-left direction.

By assumption, it follows that for each σ ∈ path(τ), there

exist t such that g(σ)
Ai+1→ t and Mk|σAi+1 , t � pi+1 ∨ qi+1

and Mk|σAi+1 , t � QTi+2 . . . QTnψ. By the definition of
Mk and Mk|σAi+1 , t � pi+1 ∨ qi+1, we have t is xi+1 or
x̄i+1. Then we get τ ′ by extending each σ ∈ path(τ). If t is
xi+1, we add a successor 1 and label the new edge as ai+1.
If t is x̄i+1, we add a successor 0 and label the new edge
as āi+1. Then σ′ = σAi+1 and t = g(σ′). Thus we have

Mk|σ
′
, g(σ′) � QTi+2 . . . QTnψ. To verify the left-to-right

direction, we get τ by cutting the i + 1 level of τ ′. Next
we need to show that for each σ ∈ path(τ), Mk|σ, g(σ) �
〈(ai+1 + āi+1); ?(pi+1 ∨ qi+1)〉QTi+2 . . . QTnψ. By the con-
struction of τ , we know that for each σ ∈ path(τ), there ex-

ists σ′ ∈ path(τ ′) such that g(σ)
Ai+1→ g(σ′), Mk|σ

′
, g(σ′) �

pi+1 ∨ qi+1 and Mk|σ
′
, g(σ′) � QTi+2 . . . QTnψ. Thus we

have Mk|σ, g(σ) � QTi+1 . . . QTnψ.

Theorem 4.1. The following two are equivalent:

• α = Q1x1Q2x2 . . . Qnxnφ(x1, . . . , xn) is true

• Mn, x0 � QT1 · · ·QTnψ(K̂p1 · · · K̂pn, K̂q1 · · · K̂qn) in
which ψ is obtained from φ by replacing each xi with
K̂pi and ¬xi with K̂qi.

Proof. By Propositions 4.1 and 4.3, we only need to
show that given V-tree τ with depth n, σ(φ) = 1 if and only
ifMn|σ, g(σ) � ψ for each σ ∈ path(τ). Since φ is in CNF, ψ
is also in CNF-like form obtained by replacing each xi with
K̂pi and each ¬xi with K̂qi for 1 ≤ i ≤ n. Thus we only need
to show that σ(xi) = 1 iffMn|σ, g(σ) � K̂pi and σ(¬xi) = 1

iff Mn|σ, g(σ) � K̂qi. Since σ(xi) = 1 iff σ(¬xi) = 0, we

only need to show that σ(xi) = 1 iff Mn|σ, g(σ) � K̂pi and

Mn|σ, g(σ) � K̂pi iff Mn|σ, g(σ) � ¬K̂qi. By the definition

of τ , we know that σ = A1 . . . An where Ai is ai or āi for
each 1 ≤ i ≤ n.

Firstly, we will show that Mn|σ, g(σ) � K̂pi if and only

if Mn|σ, g(σ) � ¬K̂qi. To verify the right-to-left direc-

tion, if Mn|σ, g(σ) � K̂pi, it follows by the definition of
Mn that xi ∈ U|σ. Then it must be the case that ai
occurs in σ. Suppose not, āi occurs in σ. It follows by
Proposition 4.2, U|σ = {x0, A1, . . . , Ai−1, x̄i, Ai+1, . . . , An}.
This is contrary with xi ∈ U|σ. Thus it must be that
ai occurs in σ. It follows by Proposition 4.2 that U|σ =
{x0, A1, . . . , Ai−1, xi, Ai+1, . . . , An}. Thus x̄i 6∈ U|σ. By the
definition of Mn and the semantics, we have Mn|σ, g(σ) �
¬K̂qi. To verify the left-to-right direction, Mn|σ, g(σ) �
¬K̂qi implies that x̄i 6∈ U|σ. For the similar reason as above,
it must be the case that āi does not occur in σ. Thus we
have that ai occurs in σ. It follows by Proposition 4.2 that
xi ∈ U|σ. Thus we have Mn|σ, g(σ) � K̂pi.

Next we will show that σ(xi) = 1 iffMn|σ, g(σ) � K̂pi. To
verify the right-to-left direction, σ(xi) = 1 implies that Ai =
ai. It follows by Proposition 4.2 that xi ∈ U|σ. Thus we have

Mn|σ, g(σ) � K̂pi. To verify the left-to-right direction, we

will show that σ(xi) = 0 implies Mn|σ, g(σ) � K̂qi. It
follows by the definition of σ(xi) = 0 that Ai = āi. It
follows by Proposition 4.2 that x̄i ∈ U|σ. Thus we have

Mn|σ, g(σ) � K̂qi.

This gives us the desired lower bound:

Theorem 4.2. The model checking problem for EPDL− is
Pspace-hard.

4.1.2 Upper Bound
In this section we give a non-trivial model checking algo-

rithm for EPDL− inspired by an equivalent semantics.
As we mentioned earlier, the semantics of EPDL is context-

dependent: reaching the same state through different paths
may affect the truth value of an epistemic subformula. This
means that the usual global model checking algorithm for
modal logics may not work here. In order to establish the
upper bound, we first give the following equivalent semantics
to EPDL− which makes the context dependency explicit in
order to facilitate a local model checking algorithm. The
idea is to keep the model intact but record the scope of action
modalities in order to compute the right uncertainty set for
epistemic subformulas. Similar idea appeared in [34] to give
an alternative semantics of public announcement logic.

Definition 4.3. Given an uncertainty mapM = 〈S, {Ra |
a ∈ A},V,U〉 and any point s ∈ S, the satisfaction relation

 is defined using the auxiliary satisfaction relation 
σ and

auxiliary relation
ωσ→, where σ is a finite (possibly empty)

sequence of actions in A:



M, s 
 φ ⇔M, s 
ε φ
M, s 
σ > ⇔ always
M, s 
σ p ⇔ p ∈ V(s)
M, s 
σ ¬φ ⇔M, s 1σ φ
M, s 
σ φ ∧ ψ⇔M, s 
σ φ and M, s 
σ ψ
M, s 
σ Kφ ⇔ for all v ∈ U|σ :M, v 
σ φ
M, s 
σ 〈π〉φ ⇔ there exists ω ∈ L(π) and t ∈ S

such that s
ωσ→ t and M, t 
σr(ω) φ

s
εσ→ t ⇔ s = t

s
(aω′)σ→ t ⇔ there exists s′ such that s

a→ s′ and s′
ω′(σa)→ t

s
(?φω′)σ→ t ⇔M, s 
σ φ and s

ω′σ→ t

where r(ω) is the sequence of actions obtained by eliminating
all the tests in ω.

Note that ω in the above definition is a finite sequence of
actions and EPDL−-tests, while σ is test-free.

We first prove a simple proposition regarding the decom-

position of
ωσ→.

Proposition 4.4. Given an uncertainty map M and se-
quences of actions and tests η, ω, ω′ such that η = ωω′, we

have (s, t) ∈ησ→ iff (s, t) ∈ωσ→ ◦
ω′σr(ω)→ for any sequence of

actions σ.

Proof. We prove it by induction on |η|. If |η| ≤ 2, it is
obvious by the definition. If |η| > 2, there are two cases,
that is, η = aη′ or η =?φη′.

Case η = aη′ : We have ω = aω′′ for some initial segment

ω′′ of η′, and (s, t) ∈(aη′)σ→ iff there exists s′ such that s
a→ s′

and (s′, t) ∈
η′σa→ . By IH, we have

η′σa→=
ω′′σa→ ◦

ω′
σar(ω′′)→ . Thus

we have (s′, t) ∈
η′σa→ iff there exists t′ such that (s′, t′) ∈

ω′′σa→

and (t′, t) ∈
ω′
σar(ω′′)→ . By definition, we have that s

a→ s′

and (s′, t′) ∈
ω′′σa→ iff (s, t′) ∈

aω′′σ→ . Thus we have (s, t) ∈
aω′′σ→

◦
ω′
σar(ω′′)→ , namely (s, t) ∈ωσ→ ◦

ω′σr(ω)→ .
Case η =?φη′ : We have ω =?φω′′ for some initial segment

ω′′ of η′, and (s, t) ∈(?φη′)σ→ iffM, s 
σ φ and s
η′σ→ t. By IH,

we have s
η′σ→ t iff (s, t) ∈

ω′′σ→ ◦
ω′
σr(ω′′)→ . Thus we have there

exists s′ such that (s, s′) ∈
ω′′σ→ and (s′, t) ∈

ω′
σr(ω′′)→ . This

follows that (s, s′) ∈(?φω′′)σ→ , and (s, t) ∈(?φω′′)σ→ ◦
ω′
σr(?φω′′)→ ,

namely (s, t) ∈ωσ→ ◦
ω′σr(ω)→ .

In the following we show that 
 coincides with �.

Theorem 4.3. Given an uncertainty map M and an ac-
tion sequence σ, if U|σ 6= ∅, we have that for each s ∈ U|σ,

(i) M|σ, sJπKM′, s′ iff there exists ω ∈ L(π) such that

M′ =M|σr(ω) and s
ωσ→ s′,

(ii) M|σ, s � φ iff M, s 
σ φ.

Proof. The proof is by simultaneous induction on π and
φ (due to the test actions). For (i), we will only focus on
the cases of π1;π2 and π1 + π2; the other cases are straight-
forward.

Case π1;π2: First, we show the direction from left to right.
It follows by assumption that there is pointed uncertainty
map N , t such that M|σ, sJπ1KN , t and N , tJπ2KM′, s′. By
IH, we have that there exists ω ∈ L(π1) such that N =

M|σr(ω) and s
ωσ→ t. Since N , t is a pointed uncertainty

map and N = M|σr(ω), we have t ∈ U|σr(ω). By IH and

M|σr(ω), tJπ2KM′, s′, we have that there exists ω′ ∈ L(π2)

such that M|σr(ω)r(ω′) = M|σr(ωω
′) = M′ and t

ω′σr(ω)→ s′.
By Proposition 4.4, it follows that ωω′ ∈ L(π1;π2) and

s
(ωω′)σ→ s′. Right to left: If there exists ω ∈ L(π1;π2)

such that M′ =M|σr(ω) and s
ωσ→ s′, we need to show that

M|σ, sJπKM′, s′. It follows by ω ∈ L(π1;π2) that there are
ρ ∈ L(π1) and ρ′ ∈ L(π2) such that ω = ρρ′. Thus we have

M′ =M|σr(ρ)|r(ρ
′) and s

(ρρ′)σ→ s′. By Proposition 4.4, this

follows that there exists t such that s
ρσ→ t and t

ρ′σr(ρ)→ s′. It
follows by U|σr(ω) 6= ∅ that U|σr(ρ) 6= ∅. By IH, it follows

that M|σ, sJπ1KM|σr(ρ), t and M|σr(ρ), tJπ2KM|σr(ρ)r(ρ), s′,
then M|σ, sJπ1;π2KM′, s′.

Case π1 + π2: We first show the direction from left to
right. If M|σ, sJπ1 + π2KM′, s′, we have M|σ, sJπ1KM′, s′
or M|σ, sJπ2KM′, s′. Suppose M|σ, sJπ1KM′, s′, it follows
by IH that there exists ω ∈ L(π1) ⊆ L(π1 + π2) such that

M′ =M|σr(ω) and s
ωσ→ s′. Right to Left: If there exists ω ∈

L(π1 +π2), it follows that ω ∈ L(π1) or ω ∈ L(π2). Suppose

ω ∈ L(π1), since M′ = M|σr(ω) and s
ωσ→ s′, it follows by

IH that M|σ, sJπ1KM′, s′. This follows that M|σ, sJπ1 +
π2KM′, s′.

For (ii), we will focus on the case of 〈π〉φ; the other cases
are straightforward.

Case 〈π〉φ: We have M|σ, s � 〈π〉φ if and only if there is
pointed uncertainty map M′, s′ such that M|σ, sJπKM′, s′
and M′, s′ � φ. By (i), it follows that M|σ, sJπKM′, s′ iff

there exists ω ∈ L(π) such that M′ =M|σr(ω) and s
ωσ→ s′.

By IH, it follows that M|σr(ω), s′ � φ iff M, s′ 
σr(ω) φ.
Thus we have M, s 
 〈π〉φ.

Let σ be ε, we have the equivalence of 
 and �.

Corollary 4.1. Given pointed uncertainty mapM, s, we
have M, s � φ iff M, s 
 φ for each φ ∈ EPDL−.

This alternative semantics induces a natural algorithm to
compute the truth value of an EPDL− formula w.r.t. to a
pointed uncertainty map. The idea is to recursively call a
function MC(M, s, σ, φ) which returns the truth value of a
subformula φ on state s given the context of σ while keep-
ingM intact. Note that, we do not need to compute all the
MC(M, s, σ, φ) for each σ and each subformula φ. The only
tricky part comes when evaluating 〈π〉φ formulas since it is
too space consuming to compute the whole set of L(π) in
the search of the right ω. Instead, we can generate one by
one in some lexicographical order all the possible sequences
up to a bound based on the atomic actions and tests oc-
curring in the formula, and then test whether it belongs to
the program π. Note that in this way, we can use the space
repeatedly, and the membership testing of L(π) is not ex-
pensive (NLOGspace-complete according to [20]).

In the appendix we present three algorithms based on ma-
trix representation of the model: Algorithm 1 computes the

uncertainty set U|σ; Algorithm 2 computes
wσ→ and Algo-

rithm 3 is the main model checking algorithm. Note that



Algorithms 2 and 3 involve mutual recursion of each other
due to the tests in programs. However, the depth of the
recursion is bounded by the length of the formula and for
each call polynomial space suffices. The detailed algorithms
and complexity analysis can be found in the appendix. It is
not hard to show the following:

Theorem 4.4 (Upper bound). The model checking prob-
lem of EPDL− is in Pspace. Thus it is Pspace-complete.

4.2 Upper Bounds for model checking EPDL
In this section, we give an EXPtime model checking method

for the full EPDL via model checking EPDL over two-dimensional
models with both epistemic and action relations. Let us first
define such models.

Definition 4.4 (Epistemic Temporal Structure).
An Epistemic Temporal Structure (ETS) is a Kripke model
with both epistemic and action relations. Formally, an ETS
model M is a tuple 〈S, {Ra | a ∈ A},∼,V〉, where Ra is a
binary relation on S, ∼ is an equivalence relation on S and
V : S → 2P is a valuation function.

Now we define an alternative semantics of EPDL over ETSs.5

Definition 4.5 (ETS Semantics). Given any ETS model
M = 〈S, {Ra | a ∈ A},∼,V〉 and any state s ∈ S, the satis-
faction relation for EPDL formulas is defined as follows:

M, s 
 > always
M, s 
 p ⇔ s ∈ V(p)
M, s 
 ¬φ ⇔M, s 1 φ
M, s 
 φ ∧ ψ⇔M, s 
 φ and M, s 
 ψ
M, s 
 Kφ ⇔∀u ∈ S : s ∼ u implies M, u 
 φ

M, s 
 [π]φ ⇔∀t ∈ S : s
π→ t implies M, t 
 φ

a→ = Ra
?φ→ = {(s, s) |M, s 
 φ}
π1;π2→ =

π1→ ◦ π2→
π1+π2→ =

π1→ ∪ π2→
π∗→ = (

π→)?

where ◦,∪, ? at right-hand side denote the usual compo-
sition, union and reflexive transitive closure of binary rela-
tions respectively.

We can turn a Kripke model without the epistemic rela-
tion into an ETS model by essentially considering all the
possible uncertainty sets.

Definition 4.6. Given any Kripke modelM = 〈S, {Ra |
a ∈ A},V〉, we define the ETS model M• as follows:

S• = {sΓ | s ∈ S,Γ ∈ 2S , s ∈ Γ}
R•a = {(sΓ, t∆) | s a→ t,∆ = Γ|a}
∼• = {(sΓ, t∆) | Γ = ∆}
V•(sΓ) = V(s)

where Γ|a = {t ∈ S | ∃s ∈ Γ such that s
a→ t}. For any

Kripke model M and any Γ ∈ 2S\{∅}, let MΓ be the uncer-
tainty map 〈M,Γ〉.
5Here we abuse the notation 
 to denote the new semantics.
Note that it is different from the alternative semantics in the
previous section.

Note that each sΓ can be viewed as an uncertainty set
with a designated state, and the definition of Ra captures
the update in the � semantics of EPDL, andM• unravels all
the updates in a whole picture. Note that the size of M• is
|S| · 2|S|−1 where S is the set of states of M.

Now we can show that � and 
 coincide w.r.t. uncertainty
map MΓ and ETS model M•.

Proposition 4.5. Given any map M, we have

(i) MΓ, sJπKM∆, t iff sΓ
π→ t∆ in M•;6

(ii) MΓ, s � φ iff M•, sΓ 
 φ.

Proof. The proof is by simultaneous induction on π and
φ (due to the test actions). For (i), we will only focus on the
non-trivial cases of π1;π2, π1 + π2 and π∗; the other cases
are straightforward.

Case π1;π2: We have MΓ, sJπ1;π2KM∆, t if and only if

MΓ, sJπ1KMΓ′ , s′ and MΓ′ , s′Jπ2KM∆, t for some Γ′ ∈ 2S .

By IH, this amounts to sΓ
π1→ s′Γ′ and s′Γ′

π2→ t∆. Thus, we

have sΓ
π1;π2→ t∆. The case for π1 + π2 is similar.

Case π∗: By induction on n, it can be proved that for each

n,MΓ, sJπnKM∆, t if and only if sΓ
πn→ t∆. This follows that

MΓ, sJπ∗KM∆, t if and only if sΓ
π∗→ t∆.

For (ii), we will only focus on the case of [π]φ; the other
cases are straightforward.

Case [π]φ: If MΓ, s � [π]φ but M•, sΓ 1 [π]φ, then

M•, t∆ 1 φ for some t∆ ∈ S• such that sΓ
π→ t∆. By IH,

this follows M∆, t 2 φ and MΓ, sJπKM∆, t. This is contra-
dictory with the assumption thatMΓ, s � [π]φ. IfM•, sΓ 

[π]φ but MΓ, s 2 [π]φ, it follows that N , t 2 φ for some
pointed uncertainty map N , t such that MΓ, sJπKM∆, t for
some ∆ ∈ 2S . Thus we haveMΓ, sJπKM∆, t andM∆, t 2 φ.

By IH, we have sΓ
π→ t∆ and M•, t∆ 1 φ. This is contra-

dictory with M•, sΓ 
 [π]φ.

Corollary 4.2. Given an uncertainty mapM = 〈N ,U〉
and s ∈ U , we have M, s � φ iff N •, sU 
 φ.

Based on the above corollary we can have a model checking
method via model checking EPDL over ETS models.

Proposition 4.6. The model checking problem of EPDL

on uncertainty maps is in EXPtime.

Proof. Given an uncertainty mapM = 〈N ,U〉, the con-
struction of ETS N • can be done in exponential time in the
size of N . By modifying the algorithm for PDL in [23], we
can get an algorithm to check EPDL formula φ on N • w.r.t.

, and its time complexity is O(|φ|2 · |N •|3). Thus, the
time complexity of model checking φ on M is bounded by
O(|φ|2 · |SN |3 · 23|SN |−3).

We conjecture that the model checking problem of full
EPDL is EXPtime-complete, and leave the lower bound to
the extended version of this paper.

4.3 Complexity of conformant planning
In the rest of this section, let us look at the complexity

of conformant planning in terms of EPDL model checking.
Although the model checking problem of full EPDL is likely
to be EXPtime-complete, the complexity of model checking

6Cf. the definition of
π→ in Def. 4.5.



the EPDL formula which encodes the conformant planning
problem (cf. Theorem 3.1) is in Pspace if the goal formula
is program-free. More precisely, we can show the following:

Theorem 4.5. The problem of model checking EPDL for-
mulas in the shape of 〈(Σa∈B(?K〈a〉>; a))∗〉Kφ, where φ is
an epistemic formula (i.e. program-free) and B ⊆ A, is in
Pspace.

Proof. (Sketch) Note that (
∑
a∈B(?K〈a〉>; a))∗ is a spe-

cial program which has only simple epistemic tests depend-
ing on the structure of the underlying Kripke model. Now
given a Kripke model N and a set B ⊆ A we can define an
ETS model N ◦ similar to N • but with a different definition
for the action relations:

R◦a = {(sΓ, t∆) | s a→ t,∆ = Γ|a,∀u ∈ Γ∃v st. u a→ v.}

Note that the extra condition guarantees that the action
a is always executable w.r.t. the whole Γ, thus fulfilling
the test K〈a〉>. Now we can have an analog of Corol-
lary 4.2, and reduce the problem of checking 〈N ,U〉, s �
(
∑
a∈B(?K〈a〉>; a))∗Kφ to the reachability problem in N ◦:

whether there is a path from sU in N ◦ such that it can
reach a state tU′ where Kφ holds. Since φ is [π]-free, we
can check it easily given U ′ using polynomial space, thus
the main task is to find the reachable tU′ . Note that, in the
size of N , there are exponentially many such tU′ and the
maximal length of the plan is also exponential. However,
we do not need to build the whole N ◦ and the bisection-like
algorithm behind the proof of Savitch’s Theorem will do the
job.7 More precisely, we first pick up a tU′ , and then run the
recursive bisection method to see whether tU′ is reachable
from sU within 2|N| steps. The depth of the recursion is
bounded by log2(2|N|) = |N | and at each recursion we need
to record the choice of the state which can be encoded by
a (0, 1)-vector using log2(2|N|) = |N | space (plus one bit to
record the result). Moreover, at the bottom of the recursion
we only need to verify one step reachability, i.e., whether
two states in N ◦ are linked by R◦a, without building the
whole N ◦. Thus the whole procedure of model checking can
be done using polynomial space.

As we mentioned in the introduction, the conformant plan-
ning problems in the AI literature are usually given by using
state variables and actions with precondition and (condi-
tional) effects, rather than explicit transition systems. The
corresponding explicit transition system can be generated
by taking all the possible valuations of the state variables
as the state space (an exponential blow up), and computing
the transitions among the valuations according to the pre-
conditions and the postconditions of the actions. In terms
of the size of explicit transition systems, our above result is
consistent with the EXPspace complexity result in the AI
literature for conformant planning with Boolean and modal
goals [21, 9]. Actually, the complexity result of Theorem 4.5
can be strengthened to Pspacecomplete based on the cor-
responding complexity result in the AI literature.

However, not all the transition systems can be generated
in this way since the preconditions and postconditions are
purely propositional and thus cannot distinguish two states
that share the same valuation. Thus in a transition sys-
tem we may allow multiple states with the same valuation

7A similar algorithm was used to pinpoint complexity of the
conformant planning in AI, cf.[21].

but different available actions and this may handle scenarios
where some external factors about the states are not mod-
elled by basic propositions.

5. CONCLUSIONS AND FUTURE WORK
In this work we first introduce the logical language EAL

over uncertainty maps and axiomatize it completely. EAL is
then extended to EPDL with programs to specify conformant
and conditional plans. We show that the conformant plan-
ning problems can be reduced to model checking problems
of EPDL. Finally we showed that model checking star-free
EPDL over uncertainty maps is Pspace-complete and model
checking the full fragment is in EXPtime. On the other
hand, model checking the conformant planning problem is
in Pspace.

Note that our EPDL is a powerful language which can al-
ready express conditional plans. This suggests that we can
use the very EPDL language to verify plans in contingent
planning w.r.t. a variant of the semantics which can handle
feedbacks during the execution. In fact, observational power
about the availability of the actions have been already incor-
porated in [35], which can be extended to general feedbacks
discussed in the literature of contingent planning (cf. e.g.,
[11]). On the other hand, to check the existence of a con-
ditional plan, we are not sure whether EPDL is expressive
enough, as subtleties may arise as in the case of conformant
planning. We leave the contingent planning to future work.

Another natural extension is to go probabilistic, and re-
duce the probabilistic planning over MDP to some model
checking problem of the probabilistic version of our EPDL.
Our ultimate goal is to cast all the standard AI planning
problems into one unified logical framework in order to fa-
cilitate careful comparison and categorization. We will then
see clearly how the form of the goal formula, the constructor
of the plan, and the observational ability matter in the the-
oretical and practical complexity of planning, in line with
the research pioneered in [5].
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APPENDIX
A. ALGORITHMS FOR EPDL−

Definition A.1 (Matrix representation). Let Bn×m
denote a (0,1)-matrix of size n ×m. A matrix Bn×1, or Bn
for short, is called a vector. Given finite uncertainty map
M, its domain S can be linearly ordered as {s1, · · · , sn}.
Thus M can be represented by a set {Ban×n | a ∈ A} of ad-
jacency matrices for accessibility relation, a vector BUn for U
and a set {Bpn | p ∈ P} of vectors for atomic propositions.

Definition A.2. Given (0,1)-matrices B′n×k, Bk×m, their
product B′′n×m is defined as: B′′n×m[i, j] = 1 iff there exists
r ≤ n such that B′n×k[i, r] = Bk×m[r, j] = 1 for all 1 ≤ i ≤
n, 1 ≤ j ≤ m.

The following algorithms are to check whether φ holds on
pointed uncertainty map M, s by Definition 4.3. The main
algorithm (Algorithm 3) recursively calls itself for each non-
trivial subformula of φ. The complex cases are for the sub-
formulas in the form of 〈π〉φ and Kφ. By Definition 4.3, to
checkM, s 
σ 〈π〉φ, we need to make sure that there exists

a sequence ω ∈ L(π) and a state t ∈ S such that s
ωσ→ t

and M, t 
σr(ω) φ. Since π is star-free, |ω| ≤ |π| for each
ω ∈ L(π). It is clear that we cannot compute and store the
whole set of L(π) within polynomial space. Instead, one by
one we generate all the possible sequences that are shorter
than |π| and are formed from the alphabet of π (cf. line 14)
and check whether they are in L(π). We can order the pos-
sible sequences lexicographically according to an ordering of
the basic actions and tests in Sig, and compute the next
sequence merely from the current one using function next.
memb chec(ω, π) checks whether it is the case ω ∈ L(π). If
ω ∈ L(π), we need to check whether there exists sj ∈ SM
such that s

ωσ→ sj (Algorithm 2) and M, sj 
σr(ω) φ, where
r(ω) is the test-free subsequence of ω which is easy to com-
pute. For the case of Kφ, we need to calculate the state set
U|σ (Algorithm 1).

Algorithm 1: Function CNU(U , σ): Calculate the the
new uncertainty set U|σ

input : U , σ

output: B
U|σ
n

1 A← BUn ;
2 for i← 1 to |σ| do
3 A← A× B

σ[i]
n×n;

4 return A;

B. COMPLEXITY ANALYSIS
We suppose |SM| = n and |φ| = k. Algorithm 1 uses one

variable A to record the uncertainty set which requires O(n)
space. Note that there is a mutual recursion in Algorithm 2
and 3, but the depth of the overall recursion is bounded by k.
In Algorithm 2, the variable consuming the most of the space
is the matrix Bn×n recording the (intermediate) relation.

Algorithm 2: Function PW (ω, σ): Calculate the binary

relation
ωσ→

input : Mixed sequence ω, action sequence σ
output: Bn×n

1 switch ωσ do
2 case εσ return Matrix({(s, s) | s ∈ S})

/* Matrix(R) is the (0, 1)-matrix
representation of the binary relation R */;

3 case (?φω′)σ
4 return Matrix({(s, s) | MC(M, s, σ, φ) = true

})× PW(ω′, σ);

5 case (aω′)σ return Ban×n× PW(ω′, σa) ;

Algorithm 3: Function MC(M, s, σ, φ): Model checking
algorithm for EPDL−

input : The pointed uncertainty map (M, s), sequence
of actions σ, φ ∈ EPDL−.

output: true if M, s 
σ φ.

1 switch φ do
2 case p
3 if p ∈ V(s) then
4 return true;
5 else
6 return false;

7 case ¬ϕ
8 return not MC(M, s, σ, ϕ)
9 case ϕ1 ∧ ϕ2

10 return MC(M, s, σ, ϕ1) and MC(M, s, σ, ϕ2);
11 case 〈π〉ϕ
12 Let Sig be the array consisting of atomic

programs and formulas in π ordered according
to their first appearances;

13 ω ← Sig[1] /* ω is the candidate sequence

we want to test */;
14 while |ω| ≤ |π| do
15 if memb chec(ω, π) then
16 for i = 1 to SM do
17 if (s, si) ∈ PW (ω, σ) then
18 if MC(M, sj , σr(ω), ϕ) then
19 return true;

20 ω ← next(ω, Sig) /* calculate the next

sequence lexicographically according

to the order Sig */;

21 return false;

22 case Kϕ

23 B
U|σ
n = CNU(U , σ) /* calculate the vector

representation of U|σ */

24 for m = 1 to |SM| do
25 if (B

U| σ
n )m = 1 and MC(M, sm, σ, ϕ) =

false then
26 return false;

27 return true;



Since σ and ω are also variables in the main algorithm and
|ω| + |σ| ≤ k due to the construction in Algorithm 3, the
space usage of Algorithm 2 before the recursive calls of PW
and MC is bounded by O(k+n2). For Algorithm 3, the most
space-demanding part is the 〈π〉φ case, where we need to
store π, Sig, and keep track one ω and one state s in the loop,
which are bounded by either k or s. Moreover, according to
[20], the complexity of memb chec is NLOGspace-complete
in the size of Sig, i.e., the alphabet of π which is bounded
again by k. Thus before calling MC nor PW again in the
〈π〉φ case, the space requirement is at most linear in both k
and n, which is less demanding than PW for each recursion.
Recall that the overall recursion depth of MC (and PW ) is
bounded by k thus the space usage of the whole algorithm
is bounded by O(k(k + n2)) = O(k2 + kn2).


