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1 Introduction

In his popular book (Smullyan, 1978), Raymond Smullyan proposed a series of puz-
zles called Knights and Knaves, where the usual goal is to determine who are the
knights (truth tellers) and who are the knaves (liars) by asking them questions. One
variation of such puzzles is made famous by Boolos (1996), where it is called the
Hardest Logic Puzzle Ever (HLPE):1

Three gods A, B, and C are called, in some order, True, False, and Random.
True always speaks truly, False always speaks falsely, but whether Random
speaks truly or falsely is a completely random matter. Your task is to deter-
mine the identities of A, B, and C by asking three yes/no questions; each
question must be put to exactly one god. The gods understand English, but
will answer all questions in their own language, in which the words for yes
and no are da and ja, in some order. You do not know which word means
which.

Boolos (1996) gave a lengthy solution which makes use of solutions to three
simpler puzzles. Rabern and Rabern (2008) noticed that the puzzle may be trivi-
alized according to Boolos’s original assumption on the behaviour of Random and
thus proposed an amended version of HLPE. Uzquiano (2010) gave a two-question
solution to the amended version of HLPE and proposed an even harder one which
is proven to be not solvable in two questions by Wheeler and Barahona (2012).
However, Wintein (2011) argues that the results in (Wheeler and Barahona, 2012)
depend on a particular conception of answering self-referential questions truthfully
or falsely, and propose a two-question solution to Uzquiano’s puzzle based on a dif-
ferent conception. Except for the formal truth theory presented in (Wintein, 2011),
existing discussions on HLPE are mostly informal to some extent, featuring Boolean
reasoning in finding solutions expressed in natural language which often involve
self-referential questions. A complete formalization of such puzzles should take care
of many different aspects which are hard to put together, such as questions and an-
swers, liars and truth tellers, epistemic reasoning, and solution concepts for puzzles.

In this paper, we will give a purely formal, yet intuitive account of HLPE-like sce-
narios, by introducing logical frameworks for reasoning about knowledge by com-
munication under uncertainty of various agent types. As suggested in HLPE and other
Knights and Knaves puzzles, people behave differently in their ways of information
exchange. The same utterance may contain different intended information due to
different types of the speakers. Here, by ‘types’, we mean the patterns that agents
follow in communicating information. Knowledge of agent types is crucial in social
communication, in particular for strategic settings where people have to interpret
and predict the behaviours of their opponents. By developing our formal frame-
work, our aim is not only to solve puzzles like HLPE, but also to deal with general
epistemic reasoning under uncertainty about agent types.

As for HLPE itself, there are several advantages to going purely formal. First of
all, some of the existing solutions can be verified formally. More importantly, by mak-
ing everything precise, we will discover the implicit epistemic assumptions behind
those puzzles about agent types. As we will show, modifying those assumptions may

1 Boolos credits Raymond Smullyan as the originator of the Puzzle and John McCarthy for adding
the twist of ja and da.
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change the nature of the puzzles, which also leads to even harder puzzles involv-
ing interesting and complicated epistemic reasoning. On the other hand, the formal
approach also limits the language of questions that we can use in solving these puz-
zles. For example, the self-referential questions and temporal-related questions as
in (Wheeler and Barahona, 2012) are not expressible in our frameworks due to dif-
ficulties in defining their semantics. The good aspect of such limitations is that we
can now prove impossibility results, e.g., non-existence of solutions to certain harder
puzzles. The ultimate goal behind the development of our formal framework is to
automate the reasoning process and thus handle the puzzles and other applications
in an automatic fashion using computational tools, without tedious analysis of com-
binatorics hidden behind the scenes.

Related work Our logical framework is based on Public Annoucement Logic (PAL)
(cf. (Plaza, 2007; Gerbrandy and Groeneveld, 1997)) where announcements update
the knowledge of agents. The extra twist here is that who said what is important
due to the different types of the speakers. Similar issues about agency have been
considered in (Liu, 2004) and (Liu, 2009) where different revision policies of dif-
ferent agents towards new incoming information are studied. A particular type of
agents, viz. the liar, has been studied in a dynamic epistemic framework similar to
PAL in (van Ditmarsch et al, 2011) and (van Ditmarsch, 2011), where the focus is on
epistemic effects of lying. The aim of the current paper, however, is to move further
by considering general agent types and epistemic reasoning about these. The treat-
ment of the type language is inspired by the analysis of protocols in (Wang, 2011b)
where agent types are viewed as simple conditional protocol schemas.

There are a few points worth mentioning about our approach:

– We take agent types as first-class citizens in our logical framework by specifying
them formally in a type language. Correspondingly, in the model we have type
assignments for each agent. The interpretation of an announcement depends on
its speaker’s type.

– With both types and agents specified in our logical language, we can formulate
complicated sentences and questions (e.g., ‘What would be his answer if he were
asked whether he is a liar?’). On the other hand, from a technical point of view of
expressive power, such intriguing formulas with complex questions and answers
can be reduced to formulas of a simple epistemic logic (with types).

– The puzzles are formalized in our framework as pairs consisting of a model and
a goal formula. A solution is a questioning strategy that satisfies some conditions
represented by model checking problems on the model.

In the rest of the paper, we will walk the readers through our technical devel-
opments step by step. Each step will be demonstrated by logic puzzles in the style
of Knights and Knaves until we are ready to talk about HLPE and its variations.
Section 2 looks at agent types in public announcements. We propose the basic log-
ical framework PALTT and provide a complete axiomatization via a reduction to
ELT, epistemic logic with type formulas. In Section 3, we enrich PALTT with ques-
tion and answer operators to obtain a new logic PQLTT. To formally discuss HLPE,
we replace announcement-like answers in PQLTT by arbitrary utterances and obtain
PQLTTU, which also allows us to define solutions to the puzzles formally. PQLTTU is
used in Section 4 to verify an existing solution to HLPE. Moreover, a spectrum of
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new, harder puzzles is proposed in 5, by considering subjective types instead of ob-
jective types and relaxing some of the epistemic assumptions in the original HLPE.
We prove that a version of HLPE, where the agents do not know others’ types, does
not have any solution at all. Section 6 ends the paper with conclusions and further
directions.

2 Agent types in public announcements

2.1 Language and semantics

In this work, an agent type specifies necessary condition for an agent to announce a
proposition. For example, a liar is someone who only announces false propositions,
i.e., if he announces ϕ then ϕ must be false, but he does not need to announce every
false proposition. We introduce the following type language to specify agent types
formally.

Definition 1 (Type language) Given a fixed agent variable x and a fixed formula
variable φ, the set E of agent types η is recursively defined as:

η ::= ψ ↞!xφ

ψ ::= ⊤ | φ | ¬ψ | ψ ∧ ψ | Kxψ

where ⊤ stands for tautologies.

Note that x and φ are the only variables, thus Kxφ∧Kyψ is not a well-formed type.
Each agent type η can also be viewed as a function assigning a precondition to each
announcement made by an agent of this type.

We can use this type language to define many intuitive agent types.

Example 1 (objective truth teller, liar and bluffer)

– Type TT (truth teller): φ↞!xφ
– Type LL (liar): ¬φ↞!xφ
– Type LT (bluffer): ⊤ ↞!xφ.

Next, if the knowledge of the speaker is taken into account, we can define more
realistic subjective types: whether a proposition can be announced depends on the
knowledge of the speaker.

Example 2 (subjective truth teller and liar)

– Type STT (subjective truth teller): Kxφ↞!xφ
– Type SLL (subjective liar): Kx¬φ↞!xφ.

Remark 1 The above are just some examples of agent types. Other interesting types
can be defined if we enrich the type language with other operators, e.g., KG (every-
one knows that ...) or CG (it is common knowledge that ...). For example, a progres-
sive speaker may only want to announce ϕ if ϕ is not known by all the audience. We
may define the following types:

– Type PSTT (progressive subjective truth teller):
Kxφ ∧Kx¬KGφ↞!xφ
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– Type CSLL (cautious subjective liar):
Kx¬φ ∧Kx¬KG¬φ↞!xφ

Based on a finite set of agent types we can build our first logical language:

Definition 2 (Public announcement language with types) Given a finite set T ⊆
E of agent types, a finite set G of agent names, a set P of basic proposition letters,
the language PALTT is defined as:

ϕ ::= ⊤ | p | η(a) | ¬ϕ | ϕ ∧ ϕ | Kaϕ | [!aϕ]ϕ

where p ∈ P, a ∈ G and η ∈ T.

We call the announcement-free fragment of PALTT the epistemic language with
type formulas (ELT) and sometimes denote PALTT by ELT + [!aϕ].

The superscript T in PALTTemphasises that the properties of PALTT may depend
on the specific T that is selected. As usual, we have the following abbreviations:
⊥ := ¬⊤, ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), ϕ → ψ := ¬ϕ ∨ ψ, ⟨!aψ⟩ϕ := ¬[!aψ]¬ϕ, K̂aϕ :=
¬Ka¬ϕ. We also write KW

a ϕ for Kaϕ ∨ Ka¬ϕ, meaning that a knows whether ϕ.
η(a) expresses that agent a is of the type η and [!aψ]ϕ says that if a can announce ψ
then after the announcement, ϕ holds.

Recall that each η can be viewed as a function. Now given η = ψ(φ,x) ↞!xφ,
let η(ϕ, a) = ψ[ϕ/φ, a/x], i.e., replacing each occurrence of φ in ψ(φ,x) with ϕ
and each occurrences of x with a. Intuitively, an agent a of a type η can announce a
concrete proposition ϕ only when η(ϕ, a) holds. Although two agents may announce
the same proposition ϕ, the actual information that it carries can be different due to
different agent types.

Definition 3 (Semantics) A model for the language of PALTT is a tuple M =
(S, {∼a| a ∈ G}, V, λ), where (S, {∼a| a ∈ G}, V ) is a standard multi-agent S5
Kripke model: S is a non-empty set of possible worlds, ∼a⊆ S ×S is an equivalence
relation over S, and V : S → 2P is a valuation function assigning to each world a
set of basic propositions. The new component λ : S ×G → T assigns to each agent
on each world a type in T. The semantics of PALTT formulas is defined as follows:

M, s ⊨ ⊤ ⇔ always
M, s ⊨ p ⇔ p ∈ V (s)

M, s ⊨ ¬ϕ ⇔ M, s ⊭ ϕ
M, s ⊨ ϕ ∧ ψ ⇔ M, s ⊨ ϕ and M, s ⊨ ψ
M, s ⊨ Kaϕ ⇔ ∀t : s ∼a t implies M, t ⊨ ϕ
M, s ⊨ η(a) ⇔ λ(s, a) = η

M, s ⊨ [!aψ]ϕ ⇔ M, s ⊨ λ(s, a)(ψ, a) implies M|aψ, s ⊨ ϕ

where M|aψ is defined as (S′, {∼′
a| a ∈ G}, V ′, λ′) where:

– S′ = {t | t ∈ S and M, t ⊨ λ(t, a)(ψ, a)}
– For each a ∈ G, t ∈ S′ :∼′

a=∼a |S′×S′ , V ′(t) = V (t) and λ′(t) = λ(t).

Note that M|aψ is well-defined if S′ is not empty, and M, s ⊨ λ(s, a)(ψ, a) in the
clause of [!aψ]ϕ guarantees that. We say ϕ is valid on M (M ⊨ ϕ) if, for all s in M:
M, s ⊨ ϕ. We say ϕ is valid (⊨ ϕ) if for all the models M : M ⊨ ϕ.
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Remark 2 For generality, we do not assume that the agents always know their types,
i.e., η(a) → Kaη(a) is not valid, since in some cases an agent may not be aware of
its own type although it behaves exactly according to this type.

The above semantics is similar to the one for the standard public announcement
logic (PAL) (cf. (Plaza, 2007)), where after an announcement of ϕ, we simply delete
all the worlds that do not satisfy ϕ, namely all the worlds where ϕ cannot be truth-
fully announced. In our setting, under the extra information of agent types, after a’s
announcing ϕ we delete all worlds where a would not have been able to announce
ϕ according to a’s type.

To be more precise in later discussions, we define the language PALT as ELT+[!ϕ],
public announcement logic with type formulas. Recall that PALTT is ELT + [!aϕ],
so the only difference between PALTT and PALT is that announcements in PALT

are agent-less, i.e., announced by a single truth teller: ‘the god’. Correspondingly,
the semantics of PALT differs from the semantics of PALTT only in the clause for
announcement (we write the relevant satisfaction relation as ⊪):

M, s ⊪ [!ψ]ϕ ⇔ M, s ⊪ ψ implies M|ψ, s ⊨ ϕ

where M|ψ is defined as (S′, {∼′
a| a ∈ G}, V ′, λ′) where:

– S′ = {t | t ∈ S and M, t ⊪ ψ}
– For each a ∈ G, t ∈ S′ :∼′

a=∼a |S′×S′ , V ′(t) = V (t) and λ′(t) = λ(t).

Note that types play no role in the semantics of announcements in PALT. Thus, PALT

behaves just like standard PAL equipped with a special set of basic propositions (the
type formulas). In the rest of this paper, given a finite set of types T, we let PT be
the set of type propositions i.e., {η(a) | η ∈ T, a ∈ G}.

It is a well-known result that public announcement logic can be translated back
to epistemic logic qua expressiveness (cf. e.g., (van Ditmarsch et al, 2007)). This
result clearly also holds in our setting with type formulas:

Proposition 1 PALT is equally expressive as ELT on S5 models with type assignments.

Proof (Sketch) We only define the relevant translation f : PALT → ELT (where
p ∈ P ∪PT):

f(⊤) = ⊤ f([!ψ]⊤) = f(ψ → ⊤)
f(p) = p f([!ψ]p) = f(ψ → p)
f(¬ϕ) = ¬f(ϕ) f([!ψ]¬ϕ) = f(ψ → ¬[!ψ]ϕ)
f(ϕ1 ∧ ϕ2) = f(ϕ1) ∧ f(ϕ2) f([!ψ](ϕ1 ∧ ϕ2)) = f([!ψ]ϕ1 ∧ [!ψ]ϕ2)
f(Kaϕ) = Kaf(ϕ) f([!ψ]Kaϕ) = f(ψ → Ka(ψ → [!ψ]ϕ))

f([!ψ][!χ]ϕ) = f([!ψ]f([!χ]ϕ))

Based on a suitable definition of the complexity of formulas (cf. (van Ditmarsch et al,
2007)) we can show that the translation/rewriting always reduces the complexity.
Hence, it will terminate at some point and eliminate all announcement operators in
an inside-out fashion.
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2.2 Knights and Knaves

Before moving on to technical results about PALTT, we demonstrate the use of this
simple yet powerful framework by some examples. Consider the following Knights
and Knaves puzzle first introduced by Smullyan (1978).

Example 3 (Three inhabitants) On a fictional island, the inhabitants are either knights,
who always tell the truths, or knaves, who always lie. A visitor D from the outside
world meets three inhabitants A, B and C on the island. D asks them to tell their
types. A says: B is a knave. B says: C is a knave. C says: A and B are knaves. Now, is
it possible for the visitor to find out the inhabitants’ types from their statements?

Let us start with the following model M1 where A, B, and C know their own types
(either TT or LL) but D knows nothing about the types of A, B, and C. Note that we
write LLT for a world swhere λ(s,A) = LL, λ(s,B) = LL and λ(s, C) = TT (similarly
for other abbreviations).2 Following the usual convention in visualizing S5 models,
the actual relations are the reflexive transitive closures of the (bidirectional) ones de-
noted in the following graphs. M2 is the model after A’s announcement !A(LL(B)),
M3 is the model after the second announcement !BLL(C) and M4 is the model after
the third announcement !C(LL(A) ∧ LL(B)). Thus M2 = M1|ALL(B), M3 = M2|BLL(C)

and M4 = M3|CLL(A)∧LL(B).

LLL D

D

LLT D LTT D LTL

D

TTT D TTL D TLL D TLT

M1

LTT

D

D LTL

D

TLL D TLT

M2

LTL

D

TLT

M3

LTL

M4

Note that by the definition of the updated model, M2 = M1|ALL(B) keeps the
worlds s in M1 where M1, s ⊨ λ(s,A)(LL(B), A), that is: it keeps the worlds s
satisfying one of the following conditions:

– λ(s,A) = TT and M1, s ⊨ LL(B),
– λ(s,A) = LL and M1, s ⊨ ¬LL(B).

Since T = {LL, TT}, the above two conditions are equivalent to the following:

– λ(s,A) = TT and λ(s,B) = LL (i.e., the worlds in the shape of TL )
– λ(s,A) = LL and λ(s,B) = TT (i.e., the worlds in the shape of LT )

It is clear that M2 only contains TL and LT . A similar reasoning works for M3 and
M4 by the definition of the updated model.

Note that according to the semantics, for ⟨!aψ⟩ϕ we have:

M, s ⊨ ⟨!aψ⟩ϕ ⇔ M, s ⊨ λ(s, a)(ψ, a) and M|aψ, s ⊨ ϕ

Now it is easy to see that LTL is the only world s in M1 such that all announcements
in the story can be successfully announced in the given order:

M1, s ⊨ ⟨!ALL(B)⟩⟨!BLL(C)⟩⟨!C(LL(A) ∧ LL(B))⟩⊤

2 Since D’s type is irrelevant, we omit it in the model.
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Moreover, since M4 is a singleton model, it is clear that

M1, LTL ⊨ ⟨!ALL(B)⟩⟨!BLL(C)⟩⟨!C(LL(A) ∧ LL(B))⟩KD(LL(A) ∧ TT(B) ∧ LL(C))

Thus, after the three announcements, agent D knows that A and C are liars and B
is a truth teller.

Now let us consider another variation of the Knights and Knaves:

Example 4 (Death or Freedom) A and B are standing at a fork in the road. Now
comes C. C knows that one of them is a Knight and the other is a Knave, but C does
not know who is who. C also knows that one road leads to Death, and the other
leads to Freedom. Suppose A is the honest Knight, and he knows which way leads
to Freedom, how can A let C know the right way to go?

Note that this puzzle is not trivial, since although A can tell the truth, C may not
be sure that A is telling the truth. To solve the puzzle, let us first prove a simple
proposition:

Proposition 2 Given T = {TT, LL}, a ∈ G and any PALTT formula ϕ, let ϕ◦
a =

(TT(a) → ϕ)∧ (LL(a) → ¬ϕ). Now for any PALTT formula ϕ, and any model M, M|aϕ◦
a

is the submodel of M obtained by keeping all the worlds that satisfy ϕ. Moreover, for
any a, b ∈ G and any modality-free PALTT formula ϕ we have: ⊨ [!a(ϕ

◦
a)]Kbϕ.

Proof For any model M, M|aϕ◦
a

only keeps the worlds s where M, s ⊨ λ(s, a)(ϕ◦
a, a),

that is: it keeps the worlds satisfying one of the following conditions:

– λ(s, a) = TT and M, s ⊨ ϕ◦
a

– λ(s, a) = LL and M, s ⊨ ¬ϕ◦
a

This can be stated equivalently as:

– M, s ⊨ TT(a) and M, s ⊨ (TT(a) → ϕ) ∧ (LL(a) → ¬ϕ)
– M, s ⊨ LL(a) and M, s ⊨ ¬((TT(a) → ϕ) ∧ (LL(a) → ¬ϕ)

which is equivalent to:

– M, s ⊨ TT(a) and M, s ⊨ TT(a) → ϕ
– M, s ⊨ LL(a) and M, s ⊨ ¬(LL(a) → ¬ϕ)

and this is again equivalent to:

– M, s ⊨ TT(a) and M, s ⊨ ϕ
– M, s ⊨ LL(a) and M, s ⊨ ϕ

Since T = {TT, LL}, M|aϕ◦
a

simply keeps all worlds where ϕ holds no matter what the
type of a is. Since the updates do not change the truth values of Boolean formulas,
the validity of [!a(TT(a) → ϕ) ∧ (LL(a) → ¬ϕ))]Kbϕ is immediate3. ⊓⊔

The preceding proposition says that given T = {LL, TT}, an agent a can actually
mimic a truthful announcement of ϕ, qua epistemic update effects, by !aϕ

◦
a, no mat-

ter what a’s type actually is. Now let us come back to Example 4. Let FA denote the
proposition that the road behind A leads to Freedom, thus ¬FA says that the road
behind A leads to Death. A solution to the puzzle of Example 4 is simply as follows:

3 Truth values of epistemic formulas may not be preserved after announcement. For a study in the
setting of PAL, we refer to (van Ditmarsch and Kooi, 2006) and (Holliday and Icard III, 2010).
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– If the road behind the Knight is the one leading to Freedom (FA) then he can say
‘if I am a Knight, then the road behind me leads to Freedom, and if I am a Knave,
then the road behind me leads to Death’ (!A((TT(A) → FA)∧ (LL(A) → ¬FA))).

– On the other hand if ¬FA is true then !A((TT(A) → ¬FA) ∧ (LL(A) → FA)) is
enough.

To verify that the above solution indeed works, we first build the initial model M as
follows, where, for example, (FA, TT, LL) denotes the world where FA is true and A
is assigned TT while B is assigned LL (similarly for other states).

FA, TT, LL

C

C ¬FA, LL, TT

C

¬FA, TT, LL C FA, LL, TT

Then based on Proposition 2, we have:

M ⊨ TT(A) →
∧

ψ∈{FA,¬FA}

(ψ → ⟨!A((TT(A) → ψ) ∧ (LL(A) → ¬ψ))⟩KW
C FA).

Since M ⊨ TT(A) ↔ LL(B) and M ⊨ LL(A) ↔ TT(B), we also have:

M ⊨ TT(A) →
∧

ψ∈{FA,¬FA}

(ψ → ⟨!A((TT(A) → ψ) ∧ (TT(B) → ¬ψ))⟩KW
C FA)

which gives an alternative solution. In words, it lets the Knight say ‘The road behind
the Knight leads to Freedom.’ when FA is true and ‘The road behind the Knight leads
to Death’ when FA is not true.

Yet another well-known solution is shorter in terms of announcements:

M ⊨ TT(A) → (FA → ⟨!A⟨!B¬FA⟩⊤⟩KW
C FA) ∧ (¬FA → ⟨!A⟨!BFA⟩⊤⟩KW

C FA)

!A⟨!B¬FA⟩⊤ reads: A announces that ‘The other guy would say that the road be-
hind me leads to Death’ (similarly for !A⟨!BFA⟩⊤). The verification of this solution
is left to the reader as a simple exercise.

However, the last solution does not work any more, if we make the puzzle harder
by letting Knights and Knaves be ignorant of each other’s types and replace objective
types TT, LL by subjective types (let T = {STT, SLL}). Then the appropriate initial
model M′ may look as follows:

FA, STT,STT A,C

B,C

FA, STT,SLL

B,C

C ¬FA, STT,SLL A,C

B,C

¬FA, STT,STT

B,C

FA, SLL,STT A,C FA, SLL,SLL C ¬FA, SLL,SLL A,C ¬FA, SLL,STT

To see what this model says, note the following validity:

M′ ⊨ ¬KW
A STT(B) ∧KC¬KW

A STT(B) ∧KW
A FA ∧ ¬KW

C FA ∧ ¬KW
C STT(A)
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This says that A does not knowB’s type and C knows this, but A does know whether
his road leads to Freedom while C does not know, as before, whether A’s road leads
to Freedom. (The case for B is similar.)

Now suppose the real situation is (FA, STT, SLL). Let us verify the previous short
solution ‘The other guy would say that the road behind me leads to Death’ in this
state.

M′, (FA, STT, SLL) ⊨ ⟨!A⟨!B¬FA⟩⊤⟩KW
C FA

=⇒ M′, (FA, STT, SLL) ⊨ ⟨!A⟨!B¬FA⟩⊤⟩⊤
⇐⇒ M′, (FA, STT, SLL) ⊨ STT(⟨!B¬FA⟩⊤, A)
⇐⇒ M′, (FA, STT, SLL) ⊨ KA⟨!B¬FA⟩⊤
⇐⇒ M′, (FA, STT, SLL) ⊨ ⟨!B¬FA⟩⊤ and M′, (FA, STT, STT) ⊨ ⟨!B¬FA⟩⊤
⇐⇒ M′, (FA, STT, SLL) ⊨ KBFA and M′, (FA, STT, STT) ⊨ KB¬FA

However, since M′, (FA, STT, STT) ⊭ KB¬FA, we have

M′, (FA, STT, SLL) ⊭ ⟨!A⟨!B¬FA⟩⊤⟩KW
C FA

Therefore, A’s announcing ‘The other guy would say that the road behind me leads
to Death’ does not work any more (assuming FA), since A does not know B’s type
and as a truth teller he can only say what he knows.

The above example demonstrates that subjective types and knowledge of the
agents may make a difference. We will apply a similar modification to HLPE in the
later part of the paper.

In the present example, we can overcome the difficulties caused by the ignorance
of other players’ types by modifying the previous short solution to (assuming FA): ‘I
would say my path leads to Freedom (if I were asked)’ (!A⟨!AFA⟩⊤). Note that this
is different from simply announcing FA, for example:

M′, (FA, SLL, STT) ⊨ ⟨!A⟨!AFA⟩⊤⟩⊤ but M′, (FA, SLL, STT) ⊭ ⟨!AFA⟩⊤.

We can verify that this modified solution indeed works:

M′ ⊨ STT(A) → ((FA → ⟨!A⟨!AFA⟩⊤⟩KW
C FA) ∧ (¬FA → ⟨!A⟨!A¬FA⟩⊤⟩KW

C FA))

2.3 Axiomatization

Our language PALTT looks similar to PALT. In this section, we will make the link pre-
cise and use it to obtain a complete axiomatization of PALTT. To ease the discussion,
let us first define some useful notations.

Given a finite set of types T, let δaϕ be an abbreviation of
∨
η∈T(η(a) ∧ η(ϕ, a))

where η(a) is a formula and η(ϕ, a) is the value (a formula) of the function η on
the input (ϕ, a). Since in our models, an agent can have only one type at each state,
each world can satisfy at most one disjunct of

∨
η∈T(η(a) ∧ η(ϕ, a)).

Now we can rewrite each PALTT formula into a PALT formula by recursively
replacing each [!aψ] modality in PALTT formulas by an announcement modality in
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PALT. Formally, we define a translation t : PALTT → PALT as follows:

t(⊤) = ⊤ t(p) = p t(η(a)) = η(a)

t(¬ϕ) = ¬t(ϕ) t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ) t(Kϕ) = Kt(ϕ)

t([!aψ]ϕ) = [!t(δaψ)]t(ϕ)

For example, given T = {TT, LL}:

t([!a[!bTT(a)]⊥]⊥)

=[!((TT(a) ∧ t([!bTT(a)]⊥)) ∨ (LL(a) ∧ ¬t([!bTT(a)]⊥)))]⊥

where t([!bTT(a)]⊥) = [!((TT(b) ∧ TT(a)) ∨ (LL(b) ∧ ¬TT(a)))]⊥.
The result is a faithful PALT translation of PALTT formulas.

Proposition 3 For any PALTT formula ϕ, and any pointed M, s: M, s ⊨ ϕ ⇐⇒
M, s ⊪ t(ϕ).

Proof We prove the proposition by induction on the structure of ϕ. The Boolean cases
and the Kaϕ case are trivial. Before we can approach the [!aψ]ϕ case, we need to
prove the following claim within the induction for ϕ:

If M, s ⊨ ψ ⇐⇒ M, s ⊪ t(ψ), then M, s ⊨ λ(s, a)(ψ, a) ⇐⇒ M, s ⊪ t(δaψ).
The argument goes by the following chain of equivalences:

M, s ⊨ λ(s, a)(ψ, a)
⇐⇒ M, s ⊨ η∗(a) ∧ η∗(ψ, a) (where η∗ = λ(s, a))

⇐⇒ M, s ⊪ η∗(a) ∧ t(η∗(ψ, a)) (see below)

⇐⇒ M, s ⊪
∨
η∈T

(η(a) ∧ t(η(ψ, a))) (since a has one and only one type on s)

⇐⇒ M, s ⊪ t(
∨
η∈T

(η(a) ∧ η(ψ, a))) (since t commutes with ∧ and ¬)

⇐⇒ M, s ⊪ t(δaψ)

Here the crucial second ‘ ⇐⇒ ’ is due to the following: (i) M, s ⊪ η∗(a) ⇐⇒
M, s ⊨ η∗(a); (ii) the assumption that M, s ⊨ ψ ⇐⇒ M, s ⊪ t(ψ); (iii) the fact
that η∗(ψ, a) is constructed by Boolean connectives and epistemic operators based
on ψ (by the definition of the type language); (iv) the Boolean cases and the Kaϕ
case in the main inductive proof.

Now based on the above claim, we know that M|t(δaψ) is exactly the same as M|aψ.
Then the following reasoning for [!aψ]ϕ is immediate:

M, s ⊨ [!aψ]ϕ

iff M, s ⊨ λ(s, a)(ψ, a) implies M|aψ, s ⊨ ϕ
iff M, s ⊪ t(δaψ) implies M|t(δaψ), s ⊪ t(ϕ)

iff M, s ⊪ t([!aψ]ϕ).

⊓⊔
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Note that the above proposition does not imply that we may just forget about
PALTT: the translation that we defined clearly introduces an exponential blow-up
in the length of formulas. For example, the executability of the announcements in
Example 3 can be translated into the following formula with standard public an-
nouncements:4

⟨!((TT(A) ∧ LL(B)) ∨ (LL(A) ∧ ¬LL(B)))⟩⟨!((TT(B) ∧ LL(C)) ∨ (LL(B) ∧ ¬LL(C)))⟩
⟨!(TT(C) ∧ LL(A) ∧ LL(B)) ∨ (TT(C) ∧ ¬(LL(A) ∧ LL(B)))⟩⊤

Based on Proposition 3 and the axiomatization of public announcement logic (cf.
e.g., (Plaza, 2007)), we axiomatize PALTT by the following Hilbert-style proof sys-
tem AT where χ[ψ/ϕ] denotes any formula obtained by replacing some occurrences
of ϕ in χ by ψ.

Axiom Schemas (for arbitrary a, b ∈ G, p ∈ P ∪PT)
TAUT all the instances of tautologies
MU

∧
a∈G(

∧
η∈T(η(a) ↔

∧
η′ ̸=η,η′∈T ¬η′(a)))

DISTK Ka(ϕ→ ψ) → (Kaϕ→ Kaψ)
T Kaϕ→ ϕ
4 Kaϕ→ KaKaϕ
5 ¬Kaϕ→ Ka¬Kaϕ
!ATOM [!aψ]p↔ (δaψ → p)
!NEG [!aψ]¬ϕ↔ (δaψ → ¬[!aψ]ϕ)
!CON [!aψ](ϕ ∧ χ) ↔ ([!aψ]ϕ ∧ [!aψ]χ)
!K [!aψ]Kbϕ↔ (δaψ → Kb[!aψ]ϕ)

Rules

GENK
ϕ

Kaϕ

RE
ϕ↔ ψ

χ[ψ/ϕ] ↔ χ

MP
ϕ, ϕ→ ψ

ψ

Theorem 1 AT is sound and complete.

Proof (Sketch) The soundness of MU is due to the fact that λ is a function, whence the
basic type formulas of any agent are mutually exclusive and altogether exhaustive
on each world of a model. The soundness of other axiom schemas and rules can
be checked as for the standard axiomatization of PAL (cf. (Plaza, 2007)) based on
Proposition 3. The completeness is proved by a reduction argument that makes use
of the reduction axiom schemas (!ATOM, !NEG, !CON, !K), and the rule RE to eliminate
[!aψ] operators in an inside-out fashion (cf. (Wang, 2011a) for a detailed discussion).
The only difficulty here is assigning ‘announcement complexities’ to PALTT formulas
in such a way that rewriting from the left-hand-side to the right-hand-side of !ATOM,
!NEG, !CON, !K always reduces complexity. With a suitable complexity assignment, we
can show that every PALTT formula can be reduced to an equivalent ELT formula by
repeatedly applying the left-to-right rewriting rules specified by the reduction axiom
schemas and the replacement of equals specified by the RE rule. It is not hard to

4 We conjecture that PALTT is at least exponentially more succinct than PALT, but leave the proof
for future work.
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see that the system AT without !ATOM, !NEG, !CON, !K can completely axiomatize ELT.
Now, if ⊨ ϕ, then ⊪ ϕ′ for some ELT formula ϕ′ that can be obtained from ϕ by using
the reduction axioms, and so ϕ ↔ ϕ′ can be derived in AT. By the completeness of
ELT we know that ϕ′ can also be derived in AT. Therefore ϕ can be derived in AT.
Hence AT is complete. ⊓⊔

The above proof shows that PALTT is equally expressive as ELT. By Proposition 1,
PALT is equally expressive as ELT. Therefore we have the following result:

Proposition 4 ELT, PALT, and PALTT are equally expressive.

In particular, PALTT formulas without knowledge operators or subjective (knowledge-
based) types can be translated into propositional formulas based on P ∪ PT. This
explains why solving puzzles like Example 3 normally only requires propositional
reasoning. However, as we will show in the later part of the paper, knowledge-based
subjective types make the story much more complicated and interesting, which will
demonstrate the full power of our framework.

We end this subsection with a technical issue that has an interesting twist in the
current context. In some axiomatizations of standard PAL, the following composition
axiom schema is included instead of the inference rule RE (cf. e.g., (van Ditmarsch
et al, 2007; Wang, 2011a)):

!COM [!ϕ][!ψ]χ↔ [!(ϕ ∧ [!ϕ]ψ)]χ

The idea is that one can always combine two announcements into one in PAL(and
also in PALT). It is natural to ask whether some form of the composition axiom
schema is valid in PALTT. However, the answer is negative in general.5 Suppose we
only have one single subjective truth teller type: T = {STT}. Consider the following
model, where a does not know if q and b does not know whether p:

s : p, q a

b

¬p, q

b

p,¬q a ¬p,¬q

Clearly M, s ⊨ ⟨!ap⟩⟨!bq⟩(Ka(p ∧ q) ∧Kb(p ∧ q)). However, it is impossible to com-
bine these two announcements into one announcement of the form of ⟨!aϕ⟩ or ⟨!bϕ⟩
after which both a and b know p and q. To see this, note that agents can only an-
nounce something that they know according to their type STT. Intuitively, you can-
not let yourself know something new by just repeating things that you already know.
Technically, a can only announce non-empty unions of equivalence classes w.r.t. ∼a,
which allows him only three different formulas (modulo logical equivalence): q, ¬q,
or ⊤. None of these will let a know whether q.

On the other hand, for some special types T, it is indeed possible to obtain a
composition result.

5 See (van Benthem and Minică, 2009) for a similar composition issue in dynamic-epistemic logics
of questions and answers.
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Proposition 5 Given T = {TT, LL}, the following is valid:

[!aϕ][!bψ]χ↔ [!aϕ
′]χ

where ϕ′ depends only on ϕ, ψ, a, and b.

Proof Due to Proposition 3, [!aϕ][!bψ]χ is equivalent to a PALT formula of the shape
[!ϕ∗][!ψ∗]t(χ) for some PALT formulas ϕ∗ and ψ∗. Since [!ϕ∗][!ψ∗]t(χ) ↔ [!(ϕ∗ ∧
[!ϕ∗]ψ∗)]t(χ) is valid in PALT semantics, [!aϕ][!bψ]χ is equivalent to the PALT for-
mula [!(ϕ∗ ∧ [!ϕ∗]ψ∗)]t(χ). Now it is not hard to reduce ϕ∗ ∧ [!ϕ∗]ψ∗ into an ELT

formula θ using our translation f as in Proposition 1, and so [!aϕ][!bψ]χ is equivalent
to a PALT formula [!θ]t(χ). Now by Proposition 2, truthful announcement of θ can be
mimicked by an announcement of a PALTT formula θ◦a by agent a. Hence it is easy to
see that the PALT formula [!θ]t(χ) is equivalent to the PALTT formula [!aθ

◦
a]χ. Taking

things together, [!aϕ][!bψ]χ is equivalent to the PALTTformula [!aθ
◦
a]χ. ⊓⊔

2.4 ‘I am a liar’

Careful readers may have found out that the language of PALTT allows us to ex-
press the following announcement: !aLL(a) which may be roughly read as ‘I am a
liar.’. It sounds like a liar sentence. However, a closer look should reveal that in our
framework this is not a self-referential liar sentence such as ‘This sentence is a lie.’.

First note that !aLL(a) is not even a well-formed formula in PALTT. Therefore,
it does not make sense to talk about its truth value. On the other hand, !aLL(a) is
viewed as an action in our framework and we may talk about its executability and
update effects.

Now given T = {TT, LL}, from Proposition 3, !aLL(a) can be translated into
a public announcement !((TT(a) ∧ LL(a)) ∨ (LL(a) ∧ ¬LL(a))) which amounts to
the action of truthfully announcing ⊥. It is impossible to truthfully announce ⊥,
so !aLL(a) is not executable at all. According to the semantics, we can easily verify
that [!aLL(a)]⊥ is valid, which is a formal way of saying !aLL(a) is not executable.
Since !aLL(a) can never happen according to the types that govern the behaviours of
agents, it has no non-trivial update effects.

On the other hand, if T = {LL, TT, LT} then [!aLL(a)]⊥ is not valid any more, and
instead, [!aLL(a)]KbLT(a) becomes valid for any a, b ∈ G. This is because only the
bluffers can possibly execute !aLL(a), by the definition of LL, TT, and LT. This demon-
strates that when bluffers are involved, successfully saying ‘I am a liar’ amounts to
signalling that the speaker is a bluffer.

A final, related question is: Can a liar tell others that he is a liar in some way?
It is rather easy when T = {TT, LL}. The liar can just announce ⊥. What about
T = {TT, LL, LT}? Unfortunately, it is no easy task without signalling who are the
bluffers first: whatever the truth teller and liar may say, the hearer just cannot rule
out the possibility that the speaker is a bluffer.

3 Agent types in questions and answers

Question-answer situations are typical interactive scenarios in which agents exchange
information with each other. In this section, we extend the language of PALTT to han-
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dle questions and answers. Moreover, by formally defining puzzles and their solutions
within our framework, we will apply our logic to HLPE-like puzzles.

3.1 A question-answer logic

First, we extend PALTT with question modalities:

Definition 4 (Public question logic with types PQLTT) Given T, P and G as
before, the language PQLTT extends PALTT with question operators and arbitrary
answer operators:

ϕ ::= ⊤ | p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | η(a) | [!aϕ]ϕ | [?aϕ]ϕ | [!a]ϕ

where η ∈ T and a ∈ G.

Intuitively, [?aψ]ϕ expresses that ‘After asking a whether ψ, ϕ holds’, and [!a]ϕ says
that ‘No matter what answer a gives (to the current question), afterwards ϕ holds’.
Here we only focus on yes/no questions. Note that this language is expressive enough
to express counterfactual questions. For example, ?a([?ap]⟨!ap⟩⊤) expresses the ques-
tion ‘would you answer yes if you were asked whether p?’.

Definition 5 (Semantics for PQLTT) The semantics of PQLTT formulas on a model
M = (S,∼, V, λ) is defined as the following w.r.t. a context µ ∈ {#} ∪ {G ×
Form(PQLTT)} where Form(PQLTT) is the set of PQLTT formulas6. Intuitively, µ
is used to record the current question: it can be of the form (a, ϕ) (a needs to answer
whether ϕ) or simply # (there is currently no question to be answered).

M, s ⊩ ϕ ⇔ M, s ⊩# ϕ
M, s ⊩µ ⊤ ⇔ always
M, s ⊩µ p ⇔ p ∈ V (s)
M, s ⊩µ ¬ϕ ⇔ M, s ⊮µ ϕ
M, s ⊩µ ϕ ∧ ψ ⇔ M, s ⊩µ ϕ and M, s ⊩µ ψ
M, s ⊩µ Kaϕ ⇔ ∀t : s ∼a t implies M, t ⊩µ ϕ
M, s ⊩µ η(a) ⇔ λ(s, a) = η(a)
M, s ⊩µ [?aψ]ϕ ⇔ M, s ⊩(a,ψ) ϕ

M, s ⊩µ [!aψ]ϕ ⇔ µ = (a, χ), ψ = ±χ and
M, s ⊩# λ(s, a)(ψ, a)

implies M|aψ, s ⊩# ϕ

M, s ⊩µ [!a]ϕ ⇔ for all ψ : M, s ⊩µ [!aψ]ϕ

where ψ = ±χ means ψ = χ or ψ = ¬χ. M|aψ is defined like before as (S′, {∼′
a| a ∈

G}, V ′, λ′) with:

– S′ = {t | t ∈ S and M, t ⊩# λ(s, a)(ψ, a)}
– For each a ∈ G, t ∈ S′: ∼′

a=∼a |S′×S′ , V ′(t) = V (t), and λ′(t) = λ(t).

We say M|aψ is defined if {t | t ∈ S and M, t ⊩# λ(s, a)(ψ, a)} is not empty.

The ideas behind the above semantics can be summarized as follows:

– Initially no question is asked (the use of # in the first clause).

6 See (Wang, 2011b) and (Wang, 2011a) for other applications of the context dependent seman-
tics in DEL.
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– When a question ?aψ is asked, the question ψ and its answerer a are recorded
(see the use of (a, ψ) in the clause for [?aψ]ϕ), replacing the previously unan-
swered one, if there is any.

– A proposition can be announced by a (!aψ) only if ψ is a proper answer to the
current question for a (the clause for [!aψ]ϕ). Thus no one can say anything
before a question is raised.

– After an answer is given, the record is set to #.
– Any question can be addressed to any one, and the arbitrary answer operator can

be split into two answers, as demonstrated by the following two valid formulas:

[?aϕ]χ↔ ⟨?aϕ⟩χ [?aϕ][!a]χ↔ [?aϕ]([!aϕ]χ ∧ [!a¬ϕ]χ)

Remark 3 Questions have been discussed in dynamic epistemic logic ((van Benthem
and Minică, 2009; Minică, 2011)), where questions partition the set of possible
worlds. Our treatment is simpler, due to our intended application in HLPE-like puz-
zles where a question is always answered before the next question is raised. There-
fore we do not consider the effect of consecutive questions: a new question will
simply replace the old one, thus there is at most just one question for exactly one of
the agents. This limitation can be overcome by using more complicated records µ,
which we leave for future work.

The language of PQLTT extends PALTT. However, PQLTT formulas can be trans-
lated into PALTT by the following translation g:

g(ϕ) = g#(ϕ)
gµ(⊤) = ⊤
gµ(p) = p

gµ(η(a)) = η(a)
gµ(¬ϕ) = ¬gµ(ϕ)

gµ(ϕ1 ∧ ϕ2) = gµ(ϕ1) ∧ gµ(ϕ2)

gµ([!aψ]ϕ) =

{
[!ag#(ψ)]g#(ϕ) if µ = (a, χ) and ψ = ±χ
⊤ if otherwise

gµ([!a]ϕ) =

{
gµ([!aχ]ϕ ∧ [!a¬χ]ϕ) if µ = (a, χ)
⊤ if otherwise

gµ([?aψ]ϕ) = g(a,ψ)(ϕ)

By this translation we show that PQLTT is no more expressive than PALTT:

Proposition 6 For any M, s and any PQLTT formula ϕ, the following holds: M, s ⊩
ϕ ⇐⇒ M, s ⊨ g(ϕ)

Proof We can actually prove the following stronger claim by a straightforward in-
duction on the structure of the formulas:

For any M, s, any PQLTT formula ϕ, and any µ ∈ {#} ∪ {G × Form(PQLTT)}:
M, s ⊩µ ϕ ⇐⇒ M, s ⊨ gµ(ϕ).

Note that although g translates [!a]ϕ into a conjunction of two concrete formulas,
we cannot eliminate the operator [!a] in PQLTT, since it depends on the previously
asked question.

On the other hand, we can also translate PALTT to PQLTT by g′:
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g′(⊤) = ⊤
g′(p) = p

g′(η(a)) = η(a)
g′(¬ϕ) = ¬g′(ϕ)

g′(ϕ1 ∧ ϕ2) = g′(ϕ1) ∧ g′(ϕ2)
g′([!aψ]ϕ) = [?ag

′(ψ)][!ag
′(ψ)]g′(ϕ)

Again, by a straightforward induction, we can show:

Proposition 7 For any M, s and any PALTT formula ϕ, the following holds: M, s ⊩
g′(ϕ) ⇐⇒ M, s ⊨ ϕ

Therefore PQLTT is equally expressive as PALTT, PALT and ELT, based on Propo-
sition 4. Again, although PQLTT does not increase the expressive power of the lan-
guage, it eases the syntactic specification. Let us consider another (more popular)
variation of the Knights and Knaves puzzle as follows.

Example 5 (Death or Freedom with questions) The setting is exactly the same as be-
fore in Example 4, but now C is allowed to ask a question to one of A and B. How
should he ask his question in such a way that he will know the way to Freedom no
matter what the answer is?

Again let T = {LL, TT}. We can express the following questions:

– ?A([?BFA]⟨!BFA⟩⊤): ‘Will the other man tell me that your path leads to Free-
dom?’

– ?A([?AFA]⟨!AFA⟩⊤): ‘Will you say ‘yes’ if you are asked whether your path leads
to Freedom?’

Recall the model M of Example 4:

FA, TT,LL

C

C ¬FA, LL,TT

C

¬FA, TT,LL C FA, LL,TT

We can verify that

M ⊩ [?A([?BFA]⟨!BFA⟩⊤)][!A]K
W
C FA ∧ [?A([?AFA]⟨!AFA⟩⊤)][!A]K

W
C FA.

As an example, let us take the first conjunct and verify it at the world (FA, TT, LL):

M, (FA, TT, LL) ⊩ [?A([?BFA]⟨!BFA⟩⊤)][!A]K
W
C FA

⇐⇒ M, (FA, TT, LL) ⊩# [?A([?BFA]⟨!BFA⟩⊤)][!A]K
W
C FA

⇐⇒ M, (FA, TT, LL) ⊩(A,[?BFA]⟨!BFA⟩⊤) [!A]K
W
C FA

⇐⇒ M, (FA, TT, LL) ⊩# [!A([?BFA]⟨!BFA⟩⊤)]KW
C FA and

M, (FA, TT, LL) ⊩# [!A(¬[?BFA]⟨!BFA⟩⊤)]KW
C FA
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Now let us continue with the second conjunct of the final part (the first conjunct can
be verified similarly):

M, (FA, TT, LL) ⊩# [!A(¬[?BFA]⟨!BFA⟩⊤)]KW
C FA

⇐⇒ M, (FA, TT, LL) ⊩# TT(¬[?BFA]⟨!BFA⟩⊤, A)

implies M|A¬[?BFA]⟨!BFA⟩⊤, (FA, TT, LL) ⊩# KW
C FA

⇐⇒ M, (FA, TT, LL) ⊮(B,FA) ⟨!BFA⟩⊤

implies M|A¬[?BFA]⟨!BFA⟩⊤, (FA, TT, LL) ⊩# KW
C FA

⇐⇒ M, (FA, TT, LL) ⊮# LL(FA, B)

implies M|A¬[?BFA]⟨!BFA⟩⊤, (FA, TT, LL) ⊩# KW
C FA

where M|A¬[?BFA]⟨!BFA⟩⊤ keeps the worlds s in M such that

M, s ⊩ λ(s,A)(¬[?BFA]⟨!BFA⟩⊤, A).

Therefore the worlds satisfying one of the following conditions are kept:
M, , TT, LL ⊩ ¬[?BFA]⟨!BFA⟩⊤ or M, , LL, TT ⊩ [?BFA]⟨!BFA⟩⊤.
Equivalently: M, , TT, LL ⊮B,FA ⟨!BFA⟩⊤ or M, , LL, TT ⊩B,FA ⟨!BFA⟩⊤.
Then it is not hard to see that M|A¬[?BFA]⟨!BFA⟩⊤ only keeps the worlds (FA, TT, LL)
and (FA, LL, TT), thus M|A¬[?BFA]⟨!BFA⟩⊤, (FA, TT, LL) ⊩# KW

C FA.

Alternatively, we can verify the above PQLTT formulas by using the translation g
and the semantics for PALTT, as we showed in Proposition 6:

g([?A([?BFA]⟨!BFA⟩⊤)][!A]K
W
C FA)

= g#([?A([?BFA]⟨!BFA⟩⊤)][!A]K
W
C FA)

= gµ([!A]K
W
C FA) where µ = (A, [?BFA]⟨!BFA⟩⊤)

= gµ([!A([?BFA]⟨!BFA⟩⊤)]KW
C FA) ∧ gµ([!A(¬[?BFA]⟨!BFA⟩⊤)]KW

C FA)

= ([!Ag#([?BFA]⟨!BFA⟩⊤)]g#(KW
C FA) ∧ ([!Ag#(¬[?BFA]⟨!BFA⟩⊤)]g#(KW

C FA)

= ([!Ag(B,FA)(⟨!BFA⟩⊤)]KW
C FA ∧ ([!A¬g(B,FA)(⟨!BFA⟩⊤)]KW

C FA
= [!A⟨!BFA⟩⊤]KW

C FA ∧ [!A¬⟨!BFA⟩⊤]KW
C FA

The announcements in the last line may look familiar: actually, under the translation
g, the solutions to Example 5 are translated into solutions to Example 4 without
using questions.

3.2 Handling arbitrary utterances

To formally discuss the original HLPE, we still need one last technical preparation,
since the gods in the story of HLPE answer questions in their own language. In this
subsection, we also take this into consideration.

Definition 6 (Public question language with types and utterances) Let U be
a finite set of utterances, the language PQLTTU replaces the announcements !aϕ in
PQLTT by utterances !au:

ϕ ::= ⊤ | p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | η(a) | [!au]ϕ | [?aϕ]ϕ | [!a]ϕ

where η ∈ T, u ∈ U and a ∈ G.
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[!au]ϕ expresses that, if a says u, then ϕ is true.
A model M for PQLTTU is a tuple: (S, {∼a| a ∈ G}, V, λ, I) where I : S ×

Form(PQLTTU) × U → Form(PQLTTU) is a function and I(s, ϕ, u) is the interpre-
tation of an answer u on world s given the question ϕ. For example, if u = {yes, no},
we can define a function I corresponding to the usual interpretation of yes and no
as answers to questions: I(s, ϕ, yes) = ϕ and I(s, ϕ, no) = ¬ϕ for each s and each ϕ.

The semantics of PQLTTU is mostly the same as that of PQLTT, except for the
formulas involving utterances, which depend on the interpretation function.

Definition 7 (Semantics for PQLTTU) The semantics of PQLTTU formulas on the model
M = (S, {∼a| a ∈ G}, V, λ, I) is defined exactly as the semantics of PQLTT w.r.t.
µ ∈ {#} ∪G× Form(PQLTTU), except for the following clauses:

M, s ⊩µ [!au]ϕ ⇔
µ = (a, χ) and

I(s, χ, u) = ±χ and
M, s ⊩# λ(s, a)(I(s, χ, u), a)

implies M|aχ,u, s ⊩# ϕ

M, s ⊩µ [!a]ϕ ⇔ for all u ∈ U : M, s ⊩µ [!au]ϕ

where M|aχ,u is defined as (S′, {∼′
a| a ∈ G}, V ′, λ′, I ′) where:

– S′ = {t | t ∈ S and M, t ⊩# λ(t, a)(I(t, χ, u), a)}
– For each a ∈ G, t ∈ S′, u ∈ U, ϕ ∈ PQLTTU: ∼′

a=∼a |S′×S′ , V ′(t) = V (t),
λ′(t) = λ(t), and I ′(t, ϕ, u) = I(t, ϕ, u).

We say that M|aχ,u is defined if the set {t | t ∈ S and M, t ⊩# λ(t, a)(I(t, χ, u), a)} is
not empty.

It is easy to see that:

M, s ⊩µ ⟨!a⟩ϕ⇔ M, s ⊩µ ¬[!a]¬ϕ⇔ there exists a u ∈ U : M, s ⊩µ ⟨!au⟩ϕ

Remark 4 It is important that we use ⊩# in the third condition of the clause for
[!au]ϕ. Replacing # by µwill cause circularity in the semantics. For instance, ?a⟨!au⟩⊤
may then expresses the self-referential question ‘Will you answer u (to this ques-
tion)?’.

3.3 Questioning strategy

In the previous sections, we talked about the notions of puzzles and solutions in an
rather informal manner. In this subsection, we attempt to formalize them precisely
in the framework of PQLTTU.

Definition 8 (Questioning strategy) A questioning strategy π w.r.t. PQLTTU is a tuple
(Q,F, r, δ, L) where

– Q is a non-empty finite set of question states and r ∈ Q is the initial state,
– F is a non-empty finite set of final states such that F ∩Q = ∅,
– δ : Q×U → Q ∪ F is a transition function,
– L : Q→ G×Form(PQLTTU) essentially assigns to each question state a question

?aϕ expressible in PQLTTU (formally represented as a pair (a, ϕ)).



20 Fenrong Liu, Yanjing Wang

In this work, we only consider the questioning strategies that are trees7.

For any questioning strategy π = (Q,F, r, δ, L) and any q ∈ Q, let LG(q) and
LΦ(q) be the first and the second element of L(q), respectively. Note that every q
node has one and only one u successor for each u in U. Two different question
states may be assigned the same question (a, ϕ). Given a questioning strategy π, an
execution of π is a path r

u1→ q1 · · ·
un→ qn in π such that qi ∈ Q for i < n and qn ∈ F .

Let P (π) be the collection of all the executions in π. The length of a strategy (|π|) is
defined as the length of the longest execution of π (a natural number or ω).

For example, given G = {A,B,C}, T = {TT, LL, LT} and U = {ja, da}, a simple
questioning strategy π: ‘asking them one by one if they are bluffers’ is illustrated as
follows:

r :?ALT(A)
ja ..

da 00 q1 :?BLT(B)
ja ..

da 00 q2 :?CLT(C)
ja **
da

44 f

where r :?ALT(A) means L(r) = (A, LT(A)), similarly for other nodes.

Let Seq(π) be all the potential question-answer sequences of π, namely,

Seq(π) = {?a1ϕ1!a1u1 . . .?anϕn!anun | q0
u1→ q1 · · ·

un→ qn+1 ∈ P (π),

∀i : ai = LG(qi), ϕi = LΦ(qi)}.

A puzzle of PQLTTU is a pair consisting of a PQLTTU model and a PQLTTU formula
as the goal: (M, ϕ). Intuitively, a puzzle asks for a questioning strategy π such that
ϕ is guaranteed after executing π. A questioning strategy π is a solution to a puzzle
(M, ϕ) if for all ?a1ϕ1!a1u1 · · ·?anϕn!anun ∈ Seq(π):

M ⊨ [?a1ϕ1](⟨!a1⟩⊤ ∧ [!a1u1][?a2ϕ2](⟨!a2⟩⊤ ∧ [!a2u2][?a3ϕ3](. . . [?anϕn]

(⟨!an⟩⊤ ∧ [!anun]ϕ)..)))

Intuitively it says that for each execution ?a1ϕ1!a1u1 · · ·?anϕn!anun ∈ Seq(π), if
the kth question ?akϕk is asked then it must be answerable by some u ∈ U, and if the
answer is indeed !akuk then we can proceed to the next question ?ak+1ϕk+1 and so
on; eventually if the last question anϕn is answered then ϕ holds. The idea behind
the answerability condition ⟨!ak⟩⊤ is that we need to ask sensible questions that
always have answers, otherwise [!a]ψ may hold trivially. For example, if an agent
is a subjective truth teller, he may not be able to answer ?ϕ if he does not know
whether ϕ. If no answer is also regarded as an answer, then the utterance ‘I don’t
know’ should be included in U as well. See Remark 5 at the end of the next section
for further discussion.

The above formal requirement looks complicated, but it can be simplified under
certain conditions. If we are sure that every question in π is always answerable w.r.t.
any world in M, then π is a solution to (M, ϕ) iff every executable path of π leads to
ϕ: for any ?a1ϕ1!a1u1 · · ·?anϕn!anun ∈ Seq(π):

M ⊩ [?a0ϕ0][!a0u0] · · · [?anϕn][!anun]ϕ.

In the discussion of HLPE, we will only consider questions that are always an-
swerable by ja or da, so the above simplified condition suffices.

7 I.e., (Q∪F, δ) is an acyclic graph where each node except r has one and only one u-predecessor
for each u ∈ U, and r can reach all other nodes.
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4 Formalizing the hardest logic puzzle ever

In this section, we review one classic solution to the original HLPE in our formal
framework.

Recall the story of HLPE mentioned at the beginning of this paper. Boolos pro-
vides the following guidelines in (Boolos, 1996):

B1 Each god may get asked more than one question;
B2 Later questions may depend on previous ones and their answers;
B3 Whether Random speaks truly or not depends on the flip of a coin in his mind:

if the coin comes down heads, he speaks truly; if tails, falsely.
B4 Random will always answer ‘da’ or ‘ja’.

Rabern and Rabern (2008) first noticed that B3 may trivialize the puzzle, and there-
fore proposed an alternative assumption B3’ that we will follow in this work:

B3’ Whether Random answers ‘ja’ or ‘da’ depends on the coin flip in his mind: if it
comes down heads, he answers ‘ja’; if tails, he answers ‘da’.

Note that B1, B2 are already assumed implicitly in our formal definition of solutions
to a puzzle, while B3’ and B4 actually say that Random is indeed of the type LT that
we have defined given any interpretation of da and ja.

However, to formalize the puzzle precisely, there is still a lot more left to be clar-
ified about the knowledge of agents. Let us list the implicit (epistemic) assumptions
as follows:

E0 A,B, and C are of the types in T = {TT, LL, LT} and this is common knowledge
(to all of the agents including the questioner D).

E1 A,B, and C are of different types and this is common knowledge.
E2 A,B, and C know each other’s types and this is common knowledge.
E3 A,B, and C know the meaning of ‘da’ and ‘ja’ and this is common knowledge.
E4 D does not know the types of A,B,C and this is common knowledge.
E5 D does not know the exact meanings of ‘da’ and ‘ja’ but he knows that one means

‘yes’ and the other means ‘no’, and this is common knowledge.

Moreover, we assume the following:

Q1 All questions are asked and answered publicly.
Q2 D does not mention himself in the questions.
LS We only consider solutions of length less than 4.

Q1 and Q2 may look unnecessary but they do play a role in the analysis of HLPE
within our framework: we only consider public questions and answers in our tech-
nical preparations, and Q2 will simplify our discussion later on in the paper.

4.1 Formalizing HLPE

In the sequel, we fix U = {ja, da}, T = {TT, LL, LT} and G = {A,B,C,D}. Accord-
ing to the assumptions E0-E5 we can build the following model M0 (as usual we
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omit the reflexive transitive arrows and also the type of D since it is irrelevant):

TT, LL, LT, JA D

D

TT, LT, LL, JA D

D

LT, TT, LL, JA

D

LT, LL, TT, JA D LL, LT, TT, JA D

D

LL, TT, LT, JA

TT, LL, LT, DA

D

D

D

TT, LT, LL, DA

D

D

D

LT, TT, LL, DA

D

D

LT, LL, TT, DA D LL, LT, TT, DA D

D

LL, TT, LT, DA

where JA at a world s denotes the interpretation that ja means yes, and da means
no at world s, i.e., I(s, ϕ, ja) = ϕ and I(s, ϕ, da) = ¬ϕ for any PQLTTU formula ϕ.
Similarly, DA at world s denotes that I(s, ϕ, ja) = ¬ϕ and I(s, ϕ, da) = ϕ for any ϕ.

Note that although we do not include a common knowledge operator CG in our
logical language, we can define common knowledge of ϕ (CGϕ) as a conjunction of
all formulas of the form Ka1 . . .Kanϕ where ai ∈ G. We may write M ⊩ CGϕ if all
the formulas in the collection are true at all worlds in M. With the help of CG, we
can verify that M0 indeed validates the formulas corresponding to the assumptions
E0 to E5. Take E5 as a non-trivial example, and let

ϕJAx = TT(x) → ([?xTT(x)]⟨!xja⟩⊤ ∧ [?x¬TT(x)]⟨!xda⟩⊤)

ϕDAx = TT(x) → ([?xTT(x)]⟨!xda⟩⊤ ∧ [?x¬TT(x)]⟨!xja⟩⊤)

Intuitively,
∧
x∈G ϕJAx is a clumsy way of saying that ja means yes and da means no

(we cannot express this directly in our language). Similarly for
∧
x∈G ϕDAx . We can

formalize E5 by the following formula (more precisely, an infinite set of formulas):

ϕE5 = CG(KD(
∧
x∈G

ϕJAx ∨
∧
x∈G

ϕDAx ) ∧ ¬(KD
∧
x∈G

ϕJAx ∨KD
∧
x∈G

ϕDAx ))

We can then verify that M0 ⊨ ϕE5.
All the other assumptions E0-E4 can also be formalized and checked on M0,

which we leave as an exercise for the interested reader.

This shows that the model M0 complies with our assumptions. Now let χ(a) be
the formula KDLL(a)∨KDTT(a)∨KDLT(a), and let χ be χ(A)∧χ(B)∧χ(C). The
HLPE puzzle can be formalized as (M0, χ).

4.2 Verification of a classic solution

Before verifying an existing solution, let us formally prove the following crucial result
from (Rabern and Rabern, 2008):

Let E∗ be the function that takes a question q to the question ‘If you were asked
whether q would you say “ja?”’. When either True or False are asked E∗(q),
a response of ‘ja’ indicates that the correct answer to q is affirmative and a
response of ‘da’ indicates that the correct answer to q is negative.
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Lemma 1 (Embedded question lemma8) For any modality-free formula ϕ of PQLTTU,
any a ∈ {A,B,C} and any submodel N of M0:

N ⊩ [?a[?aϕ]⟨!aja⟩⊤]([!aja]KD(¬LT(a) → ϕ) ∧ [!ada]KD(¬LT(a) → ¬ϕ))

where [?aϕ]⟨!aja⟩⊤ expresses ‘If I asked you ϕ would you say “ja?”’.

Proof Without loss of generality, let a = A. Let ψ = [?Aϕ]⟨!Aja⟩⊤, ϕJAs = λ(s,A)(ψ,A)
and ϕDAs = λ(s,A)(¬ψ,A) for any s in N. Then we have the following chain of equiv-
alences:

N, s ⊩ [?A[?Aϕ]⟨!Aja⟩⊤][!Aja]KD(¬LT(a) → ϕ)

⇐⇒ N, s ⊩(A,[?Aϕ]⟨!Aja⟩⊤) [!Aja]KD(¬LT(A) → ϕ)

⇐⇒

{
N, s ⊩# ϕJAs implies N|A(ψ,ja), s ⊩# KD(¬LT(A) → ϕ) if s = JA

N, s ⊩# ϕDAs implies N|A(ψ,ja), s ⊩# KD(¬LT(A) → ϕ) if s = DA
(⋆).

Now,

N, JA ⊩# ϕJAs

⇐⇒ N, s ⊩# λ(s,A)([?Aϕ]⟨!Aja⟩⊤, A) if s = JA

⇐⇒


N, s ⊩# [?Aϕ]⟨!Aja⟩⊤ if s = TT JA

N, s ⊩# ¬[?Aϕ]⟨!Aja⟩⊤ if s = LL JA

M, s ⊩# ⊤ if s = LT JA

⇐⇒


N, s ⊩# ϕ if s = TT JA

N, s ⊮# ¬ϕ if s = LL JA

N, s ⊩# ⊤ if s = LT JA

⇐⇒
{
N, s ⊩# ϕ if s ̸= LT JA

N, s ⊩# ⊤ if s = LT JA

Similarly,

N, DA ⊩# ϕDAs

⇐⇒


N, s ⊩# ¬[?Aϕ]⟨!Aja⟩⊤ if s = TT DA

N, s ⊩# ¬¬[?Aϕ]⟨!Aja⟩⊤ if s = LL DA

N, s ⊩# ⊤ if s = LT DA

⇐⇒


N, s ⊮# ¬ϕ if s = TT DA

N, s ⊩# ϕ if s = LL DA

N, s ⊩# ⊤ if s = LT DA

⇐⇒
{
N, s ⊩# ϕ if s ̸= LT DA

N, s ⊩# ⊤ if s = LT DA

According to the semantics, N|Aψ,ja retains the worlds t where:{
N, t ⊩# ϕJAt if t = JA

N, t ⊩# ϕDAt if t = DA

8 We adopt the name of the lemma from (Rabern and Rabern, 2008).
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Based on the above observations, N|Aψ,ja retains the worlds satisfying LT(A) ∨ ϕ,
independent from the interpretation of ja and da. Now since ϕ is modality-free,
all the worlds in N|Aψ,ja satisfy LT(A) ∨ ϕ. Therefore (⋆) is indeed true, and hence
N, s ⊩ [?A[?Aϕ]⟨!Aja⟩⊤][!Aja]KD(¬LT(A) → ϕ) for an arbitrary s in N. Similarly
we can show that

N ⊩ [?A[?Aϕ]⟨!Aja⟩⊤][!Ada]KD(¬LT(A) → ¬ϕ).

Since the selection of A is arbitrary, the proof can be completed easily. ⊓⊔

Let ϕ = LT(A). Based on the above lemma, we have:

M0 ⊩ [?B [?BLT(A)]⟨!B ja⟩⊤]([!B ja]KD(¬LT(B) → LT(A))∧
[!Bda]KD(¬LT(B) → ¬LT(A)))

Note that ¬LT(B) → LT(A) is equivalent to LT(B) ∨ LT(A), and ¬LT(B) →
¬LT(A) is equivalent to LT(B) ∨ ¬LT(A). Since it is commonly known that there is
only one bluffer, the above result implies the following:

M0 ⊩ [?B [?BLT(A)]⟨!B ja⟩⊤]([!B ja]KD(¬LT(C)) ∧ [!Bda]KD(¬LT(A)))

In words, this says that D will know that one of the agents is not a bluffer.

Based on this result, Rabern and Rabern (2008) proposed a three-step solution
as follows (following (Rabern and Rabern, 2008) we use E∗

a(ϕ) as the short hand
for formula [?aϕ]⟨!aja⟩⊤):

r :?BE
∗
B(LT(A))

ja ..

da **

?CE
∗
C(TT(C))

ja ..

da 00 ?CE
∗
C(LT(B))

ja **
da

44 f

?AE
∗
A(TT(A))

ja ..

da 00 ?AE
∗
A(LT(B))

ja

44

da

@@

In words,D first asksB whether A is a bluffer. Then depending on the answer, either
A or C must be a non-bluffer. Thus D can then ask the non-bluffer about his own
type and others’ types.

Call the above questioning strategy π. We can verify π formally. Note that all the
questions in π can be answered by at least one of ja and da, thus we only need to
check that for all ?a1ϕ1!a1u1 · · ·?anϕn!anun ∈ Seq(π):

M0 ⊨ [?a0ϕ0][!a0u0] · · · [?anϕn][!anun]χ.

Based on Lemma 1, the verification is immediate, and thus D will know the types of
all the three agents.



Reasoning about Agent Types 25

5 New puzzles with epistemic twists

In the previous sections, we developed epistemic frameworks to handle various puz-
zles about agent types in question-answer scenarios such as the original HLPE. How-
ever, the power of our frameworks has not yet been fully demonstrated, since most
of the previous examples can be treated as puzzles of Boolean algebra in the infor-
mal discussion style of the literature. This phenomenon has a technical explanation
as we mentioned before: as long as we talk about objective types, the knowledge
of agents is not really relevant and apparently complicated formulas can be trans-
lated back to Boolean formulas or simple epistemic formulas with no higher-order
knowledge. Thus, existing puzzles are just too easy to require the full power of our
PQLTTU framework. In this section, let us go a little bit further and consider some
significantly harder puzzles where deeper epistemic reasoning is required.

One important underlying assumption in the original puzzle and its existing vari-
ations is that A,B, and C are gods. Intuitively, being gods, A,B, and C should know
everything. Therefore their knowledge does not play a role in reasoning about their
types. However, what if they are not gods but human beings? Being ordinary people,
A,B, and C may not know everything and they will then behave according to their
own knowledge.

In such a scenario, agents may not know each other’s types, and they should have
subjective, instead of objective types. Correspondingly, we should replace T in the
assumption E0 by T′ = {STT, SLL, LT}.9 Since we do not require the agents to know
each others’ types, E2 should be abandoned. What would be an alternative to E2?
Actually there are many possible assumptions. We just list a few examples:

– It is commonly known (to A,B,C, and D) that agents A,B and C only know
their own types.

– It is commonly known that A knows everyone’s type, but B and C only know
their own types.

– It is commonly known that a bluffer knows everyone’s type, but truth tellers and
liars only know their own types.

– A knows everyone’s type, but B and C only know their own types and doubt
whether A indeed knows their types. D is not sure whether any of the three
know all the types of each other.

To see that such epistemic assumptions can really make a difference, let us look
at the following simple example N:

STT, SLL, LT, JA A,D STT, LT, SLL, JA

From the model we can read off that it is commonly known that A does not know
the types of B or C, but both B and C know the type of A. Moreover, it is commonly
known that ja means yes and da means no. Now, can D determine A,B, and C ’s
type by asking questions?

Surprisingly, the answer is negative. To prove it formally, we need Proposition 9
which will be proved later on. The intuition is this: first of all, asking A does not
bring any new information since D knows everything that A knows. However, what-
ever D asks B or C, there is always a possibility that the answerer is a bluffer and

9 A subjective bluffer is the same as an objective one.
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thus at least one of the answers does not give any useful information. For example,
suppose D asks B ‘Are you a liar?’ If the answer is ja, we know B must be LT, since
a (subjective) liar cannot answer ja. However, if the answer is da, we cannot learn
anything since both the liar and the bluffer can answer da. Note that in case A does
not have any uncertainties between the two worlds, then D can simply ask A about
the types of B and C.

Now we are ready to consider a particular variation of the HLPE:

Example 6 (HLPE with ignorance) A (subjective) liar, a (subjective) truth teller and
a bluffer are living on an island. They know their own types but do not know oth-
ers’ types. Moreover, it is commonly known that they are of different types. They
understand English but can only answer questions in their own language, in which
the words for yes and no are da and ja, in some order. Now the question is: can you
determine their types by asking questions such that they are always able to answer
ja or da.

Let us first list the new assumptions:

E0’ A,B, and C are of types in T = {STT, SLL, LT} and this is common knowledge
(to all of the agents including the questioner D).

E1 A,B, and C are of different types and this is common knowledge.
E2’ A,B, and C know their own types but do not know others’ types, and this is

also common knowledge.
E3 - E5, Q1, and Q2 are as before, but we do not constrain ourselves to 3-step

solutions, thus giving up constraint LS.

Based on the above assumption, we can build the following model M1:

STT, SLL, LT, JA A,D

B,D

STT, LT, SLL, JA C,D

B,D

LT, STT, SLL, JA

B,D

LT, SLL, STT, JA C,D
A,D

SLL, LT, STT, JA A,D

B,D

SLL, STT, LT, JA
C,D

STT, SLL, LT, DA

D

A,D

B,D

STT, LT, SLL, DA

D

C,D

B,D

LT, STT, SLL, DA

D

B,D

LT, SLL, STT, DA C,D
A,D

SLL, LT, STT, DA A,D

B,D

SLL, STT, LT, DA
C,D

It is not hard to check that E0’, E3-E5 hold on M1. For E2’, note that for any
agent a ∈ {A,B,C}, at each world s, agent a cannot distinguish s from another
world t where his own type and the interpretation function are the same as in s. For
example, agent B cannot distinguish STT, SLL, LT, JA from LT, SLL, STT, JA.

Let θ(a) be the formulaKDSLL(a)∨KDSTT(a)∨KDLT(a) and θ = θ(A)∧θ(B)∧
θ(C). The puzzle is then formalized as (M1, θ).

First note that Lemma 1 does not hold any more if we consider the submodels of
M1 instead of the submodels of M0. For example, we have:

M1, (STT, SLL, LT, JA) ⊮ [?A[?ALT(B)]⟨!Aja⟩⊤][!Ada](KD(¬LT(A) → ¬LT(B)))
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To see this, observe that M1|A[?ALT(B)]⟨!Aja⟩⊤,da keeps the world (STT, LT, SLL, JA)
where ¬LT(A) → ¬LT(B) does not hold:

M1, (STT, LT, SLL, JA) ⊩ STT(¬[?ALT(B)]⟨!Aja⟩⊤, A)
⇐⇒ M1, (STT, LT, SLL, JA) ⊩# KA¬[?ALT(B)]⟨!Aja⟩⊤
⇐⇒ M1, (STT, LT, SLL, JA) ⊮# [?ALT(B)]⟨!Aja⟩⊤

and M1, (STT, SLL, LT, JA) ⊮# [?ALT(B)]⟨!Aja⟩⊤
⇐⇒ M1, (STT, LT, SLL, JA) ⊮(A,LT(B)) ⟨!Aja⟩⊤

and M1, (STT, SLL, LT, JA) ⊮(A,LT(B)) ⟨!Aja⟩⊤
⇐⇒ M1, (STT, LT, SLL, JA) ⊮ KALT(B)

and M1, (STT, SLL, LT, JA) ⊮ KALT(B)

⇐=M1, (STT, SLL, LT, JA) ⊮ LT(B)

The essential problem is that when a subjective truth teller answers ‘no’ to a question
‘will you be able to answer “yes” to a question ?ψ’, it does not mean that he will
answer ‘no’ when he is actually asked whether ψ, because he might be not able to
answer anything according to his type. Note that the question ‘will you answer “yes”
to a question ?ψ’ is always answerable, but the question ?ψ might not be answerable.
The classic solution to the original HLPE involves asking questions about other’s
types. However, with the subjective liar and truth teller, such questions might not be
answerable any more, since the agents may be ignorant about others’ types.

Working toward solving the puzzle, we need a few new insights. Let M′
1 be the

model just like M1 but without D links between the JA zone and DA zone (that is,
D knows the meanings of ja and da). Let M2 be the upper part of M1, being the
following model:

STT, SLL, LT, JA A,D

B,D

STT, LT, SLL, JA C,D

B,D

LT, STT, SLL, JA

B,D

LT, SLL, STT, JA C,D
A,D

SLL, LT, STT, JA A,D

B,D

SLL, STT, LT, JA
C,D

Clearly, in the above model D also knows the exact meanings of da and ja and
this is common knowledge.

Before we prove the following proposition, let us be more precise about an-
swerable questions. We say that a question ?aϕ is answerable on a model M if
M ⊩ [?aϕ]⟨!a⟩⊤. Thus, for any world in M, a has at least one possible answer to
the question ?aϕ. It is not hard to see that if ?aϕ is answerable on a submodel N of
M1, then N ⊩ ¬LT(a) → (Kaϕ ∨Ka¬ϕ).

Proposition 8 There is a solution to (M1, θ) iff there is a solution to (M2, θ).

Proof Proofs for this proposition and other results presented in this section are pro-
vided in the Appendix.

This proposition says that we can actually ignore uncertainties about ja and da
when searching for solutions to (M1, θ).
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We say that a question ?aϕ is effective on a model M if for any u ∈ {ja, da}:
M|aϕ,u is defined (i.e., the domain is not empty), and M|aϕ,u ̸= M: that is, answers to
the question will always update the model by deleting some worlds. Now we make
one crucial observation before proving our main impossibility result.

Proposition 9 For any submodel N of M2 and any a ∈ {A,B,C}: N ⊩ ¬SLL(a) or
N ⊩ ¬STT(a) implies that there is no effective question for a in model N.

Based on Proposition 9, we have the following theorem.

Theorem 2 There is no solution to (M2, θ), and therefore, there is no solution to
(M1, θ).

The proof of Theorem 2 gives a further interesting result: Although we cannot
guarantee that D knows all the types of the agents, we can guarantee that D always
knows the type of one of the non-bluffers (but he cannot make sure which one)!

Now let θ′(a) be KDSLL(a) ∨ KDSTT(a) and let θ′ be θ′(A) ∨ θ′(B) ∨ θ′(C).
Although there is no solution to the original puzzle, we do have solutions to the
puzzle (M2, θ

′). A simple solution is to ask each of A,B, and C ‘are you a bluffer?’
The questioning strategy (and the outcomes at final states) can be illustrated as
follows:

?BLT(B) da //

ja
MMM

MM

&&MM
MMM

?CLT(C) da //

ja
NNN

NN

''NN
NNN

KDSLL(A)

r :?ALT(A)

jaqqqqq

88qqqqq

da
MMM

MM

&&MM
MMM

KDSTT(C) KDSTT(B)

?BLT(B) ja //

da
MMM

MM

&&MM
MMM

?CLT(C) ja //

da
NNN

NN

''NN
NNN

KDSTT(A)

KDSLL(C) KDSLL(B)

Note that D cannot guarantee where he ends up in the questioning strategy tree,
since the answer from a bluffer is essentially non-deterministic. Moreover, repeatedly
using the strategy after D reaches one of the final states will not work, since we
assume (Q1) that all the questions are asked and answered publicly. Thus when A
and B get to know more, one cannot eliminate their knowledge10. We can also turn
the above solution into a solution for (M1, θ

′) by replacing each ?aψ in the above
solution with ?a([?a((STT(a) → ψ) ∧ (SLL(a) → ¬ψ))]⟨!aja⟩⊤) as used in the proof
of Proposition 8.

Remark 5 Note that in the above discussions, we only consider ja and da as well-
formed answers and consider solutions with answerable questions only. In more
realistic cases, agents should be able to answer ‘I don’t know’ (or keep silent as
in (Uzquiano, 2010)). However, the definition of types will be much more compli-
cated, and there may be different options in redefining the liar and the bluffer. E.g.,

10 We conjecture that even when D can ask questions privately, the puzzle (M1, θ) still does not
have any solution.
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can a liar truthfully answer ‘I don’t know’ or just say a random ‘yes’ or ‘no’ instead?
Moreover, can a bluffer also announce ‘I don’t know’ randomly? Given some accept-
able new definitions of types involving ‘I don’t know’, is it possible for D to know the
types of A,B, and C? We suspect that the answer is still negative, but leave this for
future exploration.

6 Conclusion and discussion

In this paper, we first proposed a simple type language to define agent types in terms
of preconditions of announcements. Based on a finite set of types T defined in the
type language, we introduced the following five logical languages:

– ELT Epistemic language (with type formulas),
– PALT = ELT + [!ϕ] Public announcement language (with type formulas),
– PALTT = ELT + [!aϕ] Public announcement language with types,
– PQLTT = ELT + [!aϕ] + [?aϕ] + [!a] Public question language with types,
– PQLTTU = ELT + [!au] + [?aϕ] + [!a] Public question language with types and

arbitrary utterances.

In PALTT, PQLTT, and PQLTTU, who says what is important due to the types of speak-
ers. These languages are very powerful in expressing complicated announcements
and questions such as the apparently paradoxical ‘I am a liar’ announcement and
counterfactual questions like ‘would he answer “yes ” if he were asked ϕ?’.

The first four languages are interpreted on epistemic models with type assign-
ments, while the last language PQLTTU is interpreted on epistemic models with type
assignments and utterance interpretations. We have shown that the first four lan-
guages are equally expressive. This does not mean that we do not need PALT, PALTT,
and PQLTT any more: on the contrary, they allow us to express things more nat-
urally. As with standard public announcement logic (cf. (Lutz, 2006) and (French
et al, 2011)), we conjectured that PALTT enjoys an exponential gain in succinctness
than ELT. Moreover, the expressiveness results do not tell us everything about those
logics, e.g., in PALTT, two announcements cannot be composed into one in general,
but only for special cases with certain T. We also showed that the public announce-
ments in PALT can be mimicked by typed announcements with T containing LL and
TT. There is a lot more to be explored about these logics.

We studied several variations of the Knight and Knave puzzles within the logi-
cal frameworks that we developed. In particular, we formalized HLPE and verified a
classic solution. It was also shown that puzzles involving only objective truth tellers
and liars are usually simpler than those with subjective types and epistemic uncer-
tainties. Following this insight, we proposed new harder puzzles based on the orig-
inal HLPE with complicated epistemic reasoning involved. In particular, we showed
that there is no solution to a variation of HLPE, when the gods in the original HLPE
are replaced by humans who do not know each other’s types. However, there is a
questioning strategy that can let the questioner know the type of one non-bluffer.

The discussion of HLPE has demonstrated the power of our formal approach in
handling complicated epistemic reasoning based on types of agents. However, the
proofs for most of our results about HLPE boil down to tedious combinatorial anal-
ysis. Actually, we can save effort here by using automatic model checking methods
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based on our logical frameworks (cf. e.g., (Clarke et al, 1999)). In this paper, we
have formally defined what is a puzzle and what is a solution to a puzzle. The ver-
ification of a solution is then transformed into model checking problems for certain
modal formulas. In principle, we can then use techniques from model checking in
our setting. Our translations between languages allow us to do model checking of
the complex languages by model checking the translated formulas in the simpler lan-
guages. Moreover, solutions to the puzzles can be found by a bounded search over
the possible sequences of questions. Thus the spectrum of new puzzles should not be
solved by hand but in an automatic manner. A detailed discussion of computational
issues of the model checking problem is beyond the scope of this paper, and is left
for future work.

Finally, we end our paper with a list of important further issues:

– The boundary between the solvable and the unsolvable We have shown that, if
A,B, and C do not know each other’s types, then there is no solution to the re-
vised HLPE puzzle. Since there are indeed solutions to the original HLPE puzzle,
the natural question to ask is: Can we find a ‘minimal’ assumption on the knowl-
edge of A,B, and C such that there is a solution? On the other hand, we can
also keep the assumption of ignorance but allow agents to say ‘I do not know’
in some way to see whether this will lead to a solvable puzzle. As we discussed
in Remark 5, this may raise several new possibilities for defining the types of
subjective liars and bluffers.

– From knowledge to belief and more In this paper we defined ‘subjective’ agent
types by conditioning on knowledge of agents. However, realistic agents often rely
on their beliefs to make announcements or answer questions. We can certainly
replace knowledge operators with belief operators in types. An even further way
to go is to consider probability distributions of propositions as preconditions of
agent types, e.g., a liar is some one who tells lies 80% of the time.

– Richer agent types In this work, we focused on agent types in terms of what
agents deliver by their announcements. There are definitely richer types in real
life. For example, agent types may be reflected in how much information they
would like to deliver w.r.t. what they know. A conservative agent may only an-
nounce ϕ ∨ ψ even when he knows ϕ. We will leave those richer types for other
occasions.
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Appendix

Proof of Proposition 8

Proof ⇒: Intuitively, if D can find out the types of A,B, and C without knowing the
meaning of da and ja, he should be able to find it out when he knows the meaning
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of ja and da. We now prove it formally. Suppose there is a solution π for (M1, θ).
Now consider an arbitrary sequence in Seq(π):

?a1ψ1!a1u1 · · ·?anψn!anun ∈ Seq(π).

Let γ be the following formula:

[?a1ψ1](⟨!a1⟩⊤ ∧ [!a1u1][?a2ψ2](⟨!a2⟩⊤ ∧ [!a2u2][?a3ψ3]

(. . . [?anψn](⟨!n⟩⊤ ∧ [!anun]θ)..)))

By the definition of solutions we have: M1 ⊩ γ for all such γ. Due to Q2, ψi is D-free
for i ≤ n, thus the updates introduced by the answers are not relevant to the D-links
in the model. Moreover, since θ is a positive formula w.r.t. KD and the answers are
essentially submodel operations, it is not hard to show that θ is preserved under
models with less D-links compared to M1.11 Therefore it is easy to see that M′

1 ⊩ γ
for each γ. Now since M2 is a generated submodel of M′

1 it is clear that: M2 ⊩ γ for
each γ. This means that π is also a solution for (M2, θ).

For the other direction: suppose there is a solution π for (M2, θ), then we can as-
sume that the questions in π are ja- and da-free. To see this, note that given a model,
each formula can be viewed as a set of possible worlds in this model. However, any
subset of the worlds in M2 can be defined by a Boolean combination of type formulas
without using any modalities. Therefore we can always replace questions involving
modalities with a question without such modalities. Now we obtain π∗ by replacing
each question ?aψ in π by the question ?aE

∗
a((STT(a) → ψ) ∧ (SLL(a) → ¬ψ)),

namely:
?a([?a((STT(a) → ψ) ∧ (SLL(a) → ¬ψ))]⟨!aja⟩⊤).

We claim that π∗ is a solution to (M1, θ). To prove this, we will use the idea in
the proof of Lemma 1. Recall that Lemma 1 does not work any more, if we replace
M0 by M1. However, we know more about those ψ appeared in π∗: they are from
the solution π to the puzzle (M2, θ), thus they should be always answerable when
asked. Namely when ?aψ is asked on a submodel N of M2 we have N ⊩ ¬LT(a) →
(Kaψ ∨Ka¬ψ), thus

N ⊩ ¬LT(a) → ((ψ ↔ Kaψ) ∧ (¬ψ ↔ Ka¬ψ)) (i).

Let ξ(a) = (STT(a) → ψ) ∧ (SLL(a) → ¬ψ). Clearly, if N, s ⊩ STT(a) ∧ Kaψ then
N, s ⊩ Kaξ(a); if N, s ⊩ STT(a) ∧Ka¬ψ then N, s ⊩ Ka¬ξ(a); if N, s ⊩ SLL(a) ∧
Kaψ then N, s ⊩ Ka¬ξ(a); if N, s ⊩ SLL(a) ∧Ka¬ψ then N, s ⊩ Kaξ(a). In sum,
N ⊩ ¬LT(a) → (Kaξ ∨Ka¬ξ), thus

N ⊩ ¬LT(a) → ((ξ(a) ↔ Kaξ(a)) ∧ (¬ξ(a) ↔ Ka¬ξ(a))) (ii).

Namely, ?aξ is always answerable in N. Therefore it is easy to see that the following
holds:

N ⊩ ¬LT(a) → ((Ka¬[?aξ(a)]⟨!aja⟩⊤) ↔ (Ka[?aξ(a)]⟨!ada⟩⊤)) (iii)

11 Interested readers may consult (Blackburn et al, 2002) for the preservation result of positive
formulas in the standard setting of modal logic.
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Given a submodel N of M1, we want to know what do N|a?aE∗
a(ξ(a)),ja

and N|a?aE∗
a(ξ(a)),da

look like. Now let us follow the reasoning in the proof of Lemma 1 (assuming WLOG
that a = A):

N, JA ⊩ [?A[?Aξ(A)]⟨!Aja⟩⊤]⟨!Aja⟩⊤
⇐⇒ N, s ⊩# λ(s,A)([?Aξ(A)]⟨!Aja⟩⊤, A) if s = JA

⇐⇒


N, s ⊩# KA[?Aξ(A)]⟨!Aja⟩⊤ if s = TT JA

N, s ⊩# KA¬[?Aξ(A)]⟨!Aja⟩⊤ if s = LL JA

N, s ⊩# ⊤ if s = LT JA

⇐⇒


N, s ⊩# KA[?Aξ(A)]⟨!Aja⟩⊤ if s = TT JA

N, s ⊩# KA[?Aξ(A)]⟨!Ada⟩⊤ if s = LL JA

N, s ⊩# ⊤ if s = LT JA

(due to (iii))

⇐⇒


N, s ⊩# KAKAξ(A) if s = TT JA

N, s ⊩# KAKA¬¬ξ(A) if s = LL JA

N, s ⊩# ⊤ if s = LT JA

⇐⇒


N, s ⊩# ξ(A) if s = TT JA

N, s ⊩# ¬¬ξ(A) if s = LL JA

N, s ⊩# ⊤ if s = LT JA

(due to (ii))

⇐⇒
{
N, s ⊩# ξ(A) if s ̸= LT JA

N, s ⊩# ⊤ if s = LT JA

Similarly, we have:

N, DA ⊩ [?A[?Aξ(A)]⟨!Aja⟩⊤]⟨!Aja⟩⊤

⇐⇒
{
N, s ⊩# ξ(A) if s ̸= LT DA

N, s ⊩# ⊤ if s = LT DA

N, ⊩ [?A[?Aξ(A)]⟨!Aja⟩⊤]⟨!Ada⟩⊤

⇐⇒
{
N, s ⊩# ¬ξ(A) if s ̸= LT

N, s ⊩# ⊤ if s = LT

In sum, we have:

?aE
∗
a(ξ(a))


answer ja, then N|aE∗

a(ξ(a)),ja
keeps the worlds


ξ(a) ∧ STT(a)
ξ(a) ∧ SLL(a)
⊤ ∧ LT(a)

answer da, then N|aE∗
a(ξ(a)),da keeps the worlds


¬ξ(a) ∧ STT(a)
¬ξ(a) ∧ SLL(a)
⊤ ∧ LT(a)

Instantiate ξ(a) = (STT(a) → ψ) ∧ (SLL(a) → ¬ψ), we have:

?aE
∗
a(ξ(a))


answer ja, then N|aE∗

a(ξ(a)),ja
keeps the worlds


ψ ∧ STT(a)
¬ψ ∧ SLL(a)
⊤ ∧ LT(a)

answer da, then N|aE∗
a(ξ(a)),da keeps the worlds


¬ψ ∧ STT(a)
ψ ∧ SLL(a)
⊤ ∧ LT(a)
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On the other hand, for any submodel N′ of M2:

?aψ


answer ja, then N′|aψ,ja keeps the worlds


ψ ∧ STT(a)
¬ψ ∧ SLL(a)
⊤ ∧ LT(a)

(due to (i))

answer da, then N′|aψ,da keeps the worlds


¬ψ ∧ STT(a)
ψ ∧ SLL(a)
⊤ ∧ LT(a)

(due to (i))

Clearly, the answers to ?aE
∗((STT(a) → ψ) ∧ (SLL(a) → ¬ψ)) have exactly the

same update effects on submodels of M1 (modulo JA and DA) as the answers to
?aψ on the corresponding submodels of M2 where ja and da stand for ‘yes’ and ‘no’
respectively. Since π can guarantee we reach a singleton model in the end, the π∗

can make sure we reach a model with at most two worlds, which differ from each
other only in the interpretations. Therefore π∗ is a solution to (M1, θ). ⊓⊔

Proof of Proposition 9

Proof WLOG let a = A. Suppose N ⊩ ¬SLL(A) or N ⊩ ¬STT(A), namely, either
N does not have any SLL JA world or N does not have any STT JA world. In the
sequel, we only consider the first case. For the other case, similar proof works.

If N does not have any SLL JA world, there are three subcases:
1. N only has STT JA worlds. Since N is the submodel of M2 then there are at

most two STT JA worlds in N. If there is only one world then no question can be
effective since the model is already minimal. If there are two worlds (call them s
and t), then these two worlds are clearly linked by indistinguishability relations of A
and D, since N is a submodel of M2. Now whatever A answers to the question ?Aϕ,
the answer must be known to A, thus it holds on both worlds. More formally, given
a question ?Aϕ, the update effects of its answers can be analysed as follows:12

?Aϕ

{
answer ja, then N|Aϕ,ja keeps the worlds where KAϕ ∧ STT(A) is true
answer da, then N|Aϕ,da keeps the worlds where KA¬ϕ ∧ STT(A) is true

Clearly these answers, if executable, will not change the model.
2. N only has LT JA worlds. Whatever the bluffer answers, the model will not

be changed at all due to the definition of the bluffer type.
3. N has at least one STT JA world and at least one LT JA world but does not

have any SLL JA world. Given any question ?Aϕ, the update effects of its answers
can be analysed as follows:

?Aϕ


answer ja, then N|Aϕ,ja keeps the worlds

{
KAϕ ∧ STT(A)
⊤ ∧ LT(A)

answer da, then N|Aϕ,da keeps the worlds
{
KA¬ϕ ∧ STT(A)
⊤ ∧ LT(A)

Note that both N|Aϕ,ja and N|Aϕ,da are defined since there is at least one LT JA world.
Now suppose ϕ is effective, then both answers should eliminate some worlds in N.

12 For instance, according to the semantics when s is in the shape of STT JA,
λ(A, s)(I(s, ϕ, ja), A) = KAϕ. Therefore when answering ja, the updated model keeps the worlds
satisfying KAϕ ∧ STT(A).
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Clearly the condition ⊤∧LT(A) keeps all the LT JA worlds in N, thus there must be
some STT JA world t which does not satisfy KAϕ and some STT JA world t′ which
does not satisfy KA¬ϕ. However this is impossible, since all the STT JA worlds are
indistinguishable for A thus t and t′ satisfy the same KA formulas.

In sum, ?Aϕ cannot be effective on N. ⊓⊔

Proof of Theorem 2

Proof According to Proposition 8, if there is no solution to (M2, θ), then there is no
solution to (M1, θ).

Towards a contradiction, suppose that (M2, θ) has a solution π. Since D cannot
distinguish any two worlds in M2 and the effects of answers are taking submodels, it
is not hard to see that θ is satisfiable in a submodel N of M2 iff N has only one world.
According to the definition of solutions, for all ?a1ϕ1!a1u1 · · ·?anϕn!anun ∈ Seq(π),
the following model (if defined) must be singleton:

(. . . (M2|a1

ϕ1,u1
)|a2

ϕ2,u2
. . . )|anϕn,un

WLOG we may assume that the solution starts with a question to A. We claim
the following:

(M2, θ) has a solution whose initial question ?Aϕ is effective on M2 (⋆).

To see this, first note that both M2|Aϕ,ja and M2|Aϕ,da are well-defined, since da
and ja can be answered for the worlds LT JA in M2. Now if ϕ is not effective, then
either M2|Aϕ,ja = M2 or M2|Aϕ,da = M2. In either case, the initial question is useless,
e.g., if M2|Aϕ,ja = M2 then answering ja will not bring any new information, thus we
may well ignore the first question and let the question which was previously after
answering ja be the new initial question.

Based on the claim (⋆), let us focus on the effective questions and their update
effects by analysing the updated models:

?Aϕ


answer ja, then M2|Aϕ,ja keeps the worlds


KAϕ ∧ STT(A)
KA¬ϕ ∧ SLL(A)
⊤ ∧ LT(A)

answer da, then M2|Aϕ,da keeps the worlds


KA¬ϕ ∧ STT(A)
KAϕ ∧ SLL(A)
⊤ ∧ LT(A)

It is easy to see that all the LT JA worlds will be kept in the updated models. If
the question is effective then answering ja or da should both change the model by
eliminating some worlds. For the case of ja this means either there is some STT JA

world t which does not satisfy KAϕ or there is some SLL JA world t′ which does
not satisfy KA¬ϕ.

(i) Suppose it is the first case. Since ?Aϕ should be answerable, then KAϕ ∨
KA¬ϕ holds at t, thus KA¬ϕ holds at t. However, this also means that KA¬ϕ holds
at all the worlds in the shape of STT JA (1). Thus in the clause for da the condition
KA¬ϕ ∧ STT(A) will be satisfied by all the STT JA worlds. Since the question is
effective, there must be some SLL JA world which does not satisfy KAϕ. Again
since ϕ is answerable, there must be some SLL JA world which satisfy KA¬ϕ. Then
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it means that all the SLL JA worlds satisfy KA¬ϕ (2). Together with (1), we know
that SLL(A) ∨ STT(A) → KA¬ϕ is valid in M2. Therefore:

?Aϕ


answer ja, then M2|Aϕ,ja keeps the worlds

{
SLL JA

LT JA

answer da, then M2|Aϕ,da keeps the worlds
{
STT JA

LT JA

(ii) Suppose there is some SLL JA world t′ which does not satisfy KA¬ϕ. With
similar analysis we conclude that: SLL(A) ∨ STT(A) → KAϕ is valid in M2. There-
fore:

?Aϕ


answer ja, then M2|Aϕ,ja keeps the worlds

{
STT JA

LT JA

answer da, then M2|Aϕ,da keeps the worlds
{
SLL JA

LT JA

Based on (i) and (ii), we know that one of the answers to an effective question
eliminates STT JA worlds and the other eliminates SLL JA worlds. Note that such
effective questions do exist, e.g., ?ALT(A) and ?A¬LT(A).

Now by Proposition 9, asking A again cannot be effective any more thus the
next effective questions must be asked to B or C. Note that we can again ignore the
ineffective questions for the reasons mentioned earlier. Suppose WLOG that after A’s
answering ja we are left with SLL JA and LT JA worlds as in case (i), and B is then
asked. The effects of B’s answers are as follows:

?Bϕ
′


(M2|Aϕ,ja)|Bϕ′,ja keeps the worlds


KBϕ

′ ∧ STT(B)
KB¬ϕ′ ∧ SLL(B)
⊤ ∧ LT(B)

out of
{
SLL JA

LT JA

(M2|Aϕ,ja)|Bϕ′,da keeps the worlds


KB¬ϕ′ ∧ STT(B)
KBϕ

′ ∧ SLL(B)
⊤ ∧ LT(B)

out of
{
SLL JA

LT JA

With exactly the same argument as in the case of ?Aϕ above, to make ϕ′ effective,
SLL(B)∨STT(B) → KBϕ

′ or SLL(B)∨STT(B) → KB¬ϕ′ should be valid in M2|Aϕ,ja
and the update effects of the answers are to eliminate one of the possibilities of
STT(B) JA and SLL(B) JA. Note that M2|Aϕ,ja keeps SLL JA and LT JA worlds,

thus M2|Aϕ,ja can be depicted as below:

SLL, STT, LT, JA

A,D

B,D LT, STT, SLL, JA

A,D

SLL, LT, STT, JA C,D LT, SLL, STT, JA

Then (M2|Aϕ,ja)|Bϕ′,ja is one of the following two models and (M2|Aϕ,ja)|Bϕ′,da is the
other one:

SLL, STT, LT, JA

A,D

B,D LT, STT, SLL, JA

SLL, LT, STT, JA C,D LT, SLL, STT, JA SLL, LT, STT, JA
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For the left-hand-side case, there is no effective questions to ask any more due to
Proposition 9 and the fact that ¬STT(A)∧¬STT(B)∧¬SLL(C) is valid in the model.
Thus it is easy to see that we cannot guarantee one of the two worlds will be elimi-
nated by an answer. It is interesting that although D now knows C ’s type, he cannot
know A and B’s type. Moreover, C cannot help him since he also does not know the
others’ types. On the other hand, although A and B now know the types of every-
one, they cannot help D either, since D cannot distinguish who is bluffing. For the
right-hand model, there are still effective questions for C since all the possibilities
STT(C), SLL(C) and LT(C) are still there in the model. However, with a similar anal-
ysis as in the first two steps, after C answers an effective question, the situation will
be similar to the above left-hand-side model: we are left with two worlds and cannot
guarantee that every answer will make a difference.

In sum, we cannot guarantee that we will reach a singleton model in the end,
thus it is contradictory to the assumption that there is a solution. ⊓⊔


